{{'Search' | translate}}
 

Agar

琼脂(粉末)

Company: Wako Pure Chemical Industries
Catalog#: 016-11875
Bio-protocol()
Company-protocol()
Other protocol()

A Pulse–chase EdU Method for Detection of Cell Division Orientation in Arabidopsis and Juncus prismatocarpus Leaf Primordia
Author:
Date:
2021-01-05
[Abstract]  In plants, the morphological diversity of leaves is largely determined by cell division, especially cell division orientation. Whereas cell division itself is easily monitored, the detection and quantification of cell division orientation are difficult. The few existing methods for detection and quantification of cell division orientation are either inefficient or laborious. Here, we describe a pulse-chase strategy using a 5-ethynyl-2’-deoxyuridine (EdU) labeling assay. Plant tissues are first incubated with EdU for a short period (pulse), followed by a long incubation without EdU (chase). Using this method, the positions of daughter cells are easily detected and can be used to quantify cell division orientation. Our protocol is rapid and very efficient for quantitative analysis of ... [摘要]  [摘要]在植物中,叶片的形态多样性在很大程度上取决于细胞分裂,尤其是细胞分裂方向。尽管细胞分裂本身很容易监测,但是细胞分裂方向的检测和定量却很困难。现有的几种检测和定量细胞分裂方向的方法要么效率低下要么费力。在这里,我们描述了使用5-乙炔基-2'-脱氧尿苷(EdU )标记测定的脉冲追踪策略。首先将植物组织与EdU一起短时间(脉冲)孵育,然后在没有EdU的情况下长时间孵育(追逐)。使用这种方法,子细胞的位置易于检测,可用于量化细胞分裂方向。我们的协议可以快速有效地定量分析细胞分裂方向,并且可以同时应用于模型植物和非模型植物。

图形摘要:

通过脉冲追逐EdU方法清晰可见的植物细胞分裂对


[背景]植物细胞通过细胞壁彼此附接,并且不能迁移。因此,在叶片发育的早期,组织化,定向的细胞分裂在很大程度上决定了成熟叶片的形状。迄今为止,还没有报道用于有效和快速检测和定量细胞分裂取向的方法。现有方法包括使用ap CYCB1; 1 :: GUS (β-葡萄糖醛酸糖苷酶)报告基因线(末期)可视化子核(末期)(Horiguchi et al。,2011)或使用4',6-diamidino可视化纺锤状赤道(中期) -2-苯基吲哚(DAPI)染色(Fukushima et ...

Investigating Localization of Chimeric Transporter Proteins within Chloroplasts of Arabidopsis thaliana
Author:
Date:
2018-02-05
[Abstract]  In this protocol, we describe a method to design chimeric proteins for specific targeting to the inner envelope membrane (IEM) of Arabidopsis chloroplasts and the confirmation of their localization by biochemical analysis. Specific targeting to the chloroplast IEM can be achieved by fusing the protein of interest with a transit peptide and an IEM targeting signal. This protocol makes it possible to investigate the localization of chimeric proteins in chloroplasts using a small number of transgenic plants by using a modified method of chloroplast isolation and fractionation. IEM localization of chimeric proteins can be further assessed by trypsin digestion and alkaline extraction. Here, the localization of the chimeric bicarbonate transporter, designated as SbtAII, is detected by ... [摘要]  在这个协议中,我们描述了一种设计嵌合蛋白的方法,用于特异性靶向拟南芥叶绿体的内包膜(IEM)并通过生化分析确定它们的定位。 叶绿体IEM的特异性靶向可通过将感兴趣的蛋白质与转运肽和IEM靶向信号融合来实现。 这个协议使得有可能使用少量的转基因植物,通过使用修改的叶绿体分离和分离方法来研究嵌合蛋白在叶绿体中的定位。 嵌合蛋白的IEM定位可以通过胰蛋白酶消化和碱性提取进一步评估。 在此,称为SbtAII的嵌合碳酸氢根转运蛋白的定位通过使用针对葡萄球菌蛋白A的抗体进行蛋白质印迹来检测。该方案改编自上原等人,2016年


【背景】有人提出将蓝藻CO 2浓度机制整合到叶绿体中是改善C 3+植物光合作用的有希望的方法。 根据理论估计,将BicA和SbtA整合到叶绿体IEM中可以提高光合CO 2固定率。 我们研究了核编码的蓝细菌碳酸氢盐转运蛋白BicA和SbtA与拟南芥叶绿体的IEM的整合。 因此,我们制定了一个协议,设计嵌合构造为特定目标的IEM和调查嵌合蛋白在叶绿体中的定位。

Using Light and Electron Microscopy to Estimate Structural Variation in Thylakoid Membranes
Author:
Date:
2017-12-05
[Abstract]  The shapes of chloroplasts and the architectures of internal thylakoid membranes are altered by growth and environmental changes (Lichtenthaler et al., 1981; Kutik, 1985; Terashima and Hikosaka, 1995). These morphological alterations proceed via transitional intermediates, during which dynamic and heterogeneous thylakoid membranes are observed in cells (Nozue et al., 2017). Light microscopy is useful for the detection of morphological differences in chloroplasts. The thylakoid architecture of such morphologically variable chloroplasts is confirmed by transmission electron microscopy (TEM). The method of monitoring structural variation by light microscopy in combination with electron microscopy is described. [摘要]  叶绿体的形状和内部类囊体膜的结构被生长和环境变化所改变(Lichtenthaler等,1981; Kutik,1985; Terashima和Hikosaka,1995)。 这些形态改变经由过渡中间体进行,在此期间在细胞中观察到动态和非均匀的类囊体膜(Nozue等人,2017)。 光学显微镜可用于检测叶绿体中的形态差异。 透射电子显微镜(TEM)证实了这种形态变化的叶绿体的类囊体结构。 描述了用光学显微镜结合电子显微镜监测结构变化的方法。
【背景】已经提出了超结构形态学与类囊体膜中的光合作用和代谢途径的功能性偶联(Oswald等人,2001)。 这是由类囊体膜在叶成熟期间和从营养期向开花生长期转变期间的异质性支持的。 形态改变有一定的时间滞后(Nozue等人,2017)。 类囊体膜的重排与叶绿体形状的变化同时发生,叶绿体的形状从具有典型的细长透镜状外观变为通过光学显微镜可识别的肿胀外观。

Comments