{{'Search' | translate}}
 

Goat anti-Chicken IgY (H+L) Secondary Antibody, Alexa Fluor 488

荧光共轭二抗

Company: Thermo Fisher Scientific
Catalog#: A11039
Bio-protocol()
Company-protocol()
Other protocol()

Labeling Aversive Memory Trace in Mouse Using a Doxycycline-inducible Expression System
Author:
Date:
2017-10-20
[Abstract]  A memory trace, also known as a memory engram, is theorized to be a mechanism for physical memory storage in the brain (Silva et al., 2009; Josselyn, 2010) and memory trace is associated with a specific population of neurons (Liu et al., 2012; Ramirez et al., 2013). Labeling and stimulating those neurons will activate the memory trace (Liu et al., 2012; Ramirez et al., 2013). Memory appears to be spread over different regions of the brain rather than being localized to one area. Therefore, the methods used to trace memory have the ability to improve our understanding of neuronal circuits. In this protocol, we introduce a doxycycline-inducible expression system to label the specific neurons associated with the original memory trace. [摘要]  存储器跟踪(也称为存储器枚举)被理论化为大脑中物理存储器存储的机制(Silva等人,2009; Josselyn,2010),并且内存跟踪与一个 特定的神经元群体(Liu et al。,2012; Ramirez等人,2013)。 标记和刺激那些神经元将激活记忆痕迹(Liu et al。,2012; Ramirez等人,2013)。 记忆似乎分布在大脑的不同区域,而不是局限于一个区域。 因此,用于跟踪记忆的方法有能力提高我们对神经元电路的理解。 在本协议中,我们引入多西环素诱导表达系统来标记与原始记忆痕迹相关的特定神经元。
【背景】记忆痕迹是记忆被存储为大脑物理或生物化学变化的理论手段(Ryan等人,2015)。在二十世纪初德国动物学家理查德·塞蒙(Richard Semon)制定记忆追踪概念之后,记忆存储的具体过程一直是神经科学领域辩论的一个未解决的话题(Poo et al。,2016)。尽管记忆机制已经成为几十年来的争论焦点,但已经一致认为,特定的神经元被用于记忆的存储(Liu等人,2012; Ramirez等人, ...

Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae
Author:
Date:
2017-09-20
[Abstract]  The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic ... [摘要]  以前已经描述了基因编码的钙指示剂GFP-aequorin的斑马鱼中神经活性的生物发光监测的概念验证(Naumann等人,2010),但是仍然存在挑战。 首先,源自单一肌纤维的生物发光信号可能构成主要缺陷。 第二,仅从神经元发出的生物发光信号非常小。 为了改善信号,同时验证特异性,我们提供了一个优化的4步骤协议,实现:1)选择性表达斑马鱼密码子优化的GFP水母发光蛋白,2)在GFP-水母发光蛋白底物coelenterazine中有效浸泡幼虫3)生物发光监测神经活动 来自运动神经元的自由运动的动物执行声学逃逸和4)使用免疫组织化学验证肌肉的表达缺乏。
【背景】不同于荧光基因编码的钙指示剂(GECIs)(Grienberger和Konnerth,2012),如GCaMP家族,生物发光指示剂GFP-水母发光蛋白(Shimomura等,1962)不需要光激发,因此开启了监测神经元的新途径包括苍蝇在内的动物(Martin等,2007),小鼠(Rogers et al。,2007)和斑马鱼幼虫(Naumann et ...

Preparation and Immunofluorescence Staining of the Trachea in Drosophila Larvae and Pupae
Author:
Date:
2016-05-05
[Abstract]  The Drosophila melanogaster trachea is a branched network of rigid chitin-lined tubes that ramify throughout the body and functions as the fly’s respiratory organ. Small openings at the ends of the tracheal tubes allow gas exchange to occur by diffusion between internal tissues and the exterior environment. Tracheal tubes are lined by a single layer of epithelial cells, which secrete chitin and control tube morphology and size. Studies of tracheal development in Drosophila embryos have elucidated fundamental mechanisms of tube morphogenesis and maintenance in vivo, and identified major signaling pathways that regulate these processes (Manning and Krasnow, 1993; Affolter and Shilo, 2000; Zuo et al., 2013; Kerman et al., ... [摘要]   melanogaster 气管是一种由几丁质内衬的管组成的分支网络,分布在整个身体并作为苍蝇的呼吸器官。气管管端部的小开口允许通过内部组织和外部环境之间的扩散而发生气体交换。气管管由单层上皮细胞衬里,其分泌几丁质和对照管形态和尺寸。在Drosop hila 胚胎中的气管发育的研究阐明了管形态发生和维持体内的基本机制,并且鉴定了调节这些过程的主要信号传导途径(Manning和Krasnow,1993; Affolter和Shilo,2000; Zuo等人,2013; Kerman等人,2006; Schottenfeld等人, em,2010)。近年来,在变态过程中对气管的兴趣日益增长,当在幼虫中用作呼吸器官的气管分支被修复或被由致动的气管祖细胞产生的新的气管组织或成熟的气管细胞(Manning和Krasnow,1993; Sato和Kornberg,2002; Guha等人,2008; Guha和Kornberg,2005; Weaver和Krasnow,2008; Pitsouli和Perrimon, 2010; Chen和Krasnow,2014)在过程结束时形成成人气管。正在进行的衰变和组织形成模拟其他生物体中组织修复和再生的方面,并且已经用于理解祖细胞如何分裂和分化(Pitsouli和Perrimon,2010; ...

Comments