{{'Search' | translate}}
 

Cover slips (22 x 22 mm, No. 1, thickness 0.12-0.17 mm)

方形显微镜盖玻璃

Company: Matsunami Glass
Catalog#: C022221
Bio-protocol()
Company-protocol()
Other protocol()

Time-lapse Observation of Chromosomes, Cytoskeletons and Cell Organelles during Male Meiotic Divisions in Drosophila
Author:
Date:
2017-04-20
[Abstract]  In this protocol, we provide an experimental procedure that perform time-lapse observation of intra-cellular structures such as chromosomes, cytoskeletons and cell organelles during meiotic cell divisions in Drosophila males. As primary spermatocyte is the largest dividing diploid cell in Drosophila, which is equivalent in size to mammalian cultured cells, one can observe dynamics of cellular components during division of the model cells more precisely. Using this protocol, we have showed that a microtubule-associated protein plays an essential role in microtubule dynamics and initiation of cleavage furrowing through interaction between microtubules and actomyosin filaments. We have also reported that nuclear membrane components are required for a formation and/or ... [摘要]  在这个协议中,我们提供了一个实验程序,在果蝇男性的减数分裂细胞分裂期间,进行细胞内结构如染色体,细胞骨架和细胞器的延时观察。由于主要精母细胞是果蝇中最大的分裂二倍体细胞,其大小与哺乳动物培养细胞相当,可以更准确地观察模型细胞分裂期间细胞组分的动力学。使用该方案,我们已经表明,微管相关蛋白在微管动力学中起重要作用,并通过微管和肌动球蛋白丝之间的相互作用开始裂解沟槽。我们还报道说,需要核膜组分来形成和/或维持在果蝇细胞中细胞分裂所必需的主轴包络。

在果蝇中,也可以在标准培养条件下良好培养的良好培养细胞系。然而,它们的单元尺寸,特别是细胞质体积,比哺乳动物细胞的小得多。这在细胞分裂过程中损害了细胞成分的检查。精母细胞,在另一方面,实现第一次减数分裂开始之前不同的细胞生长。主要精母细胞是出现在果蝇发育中的增殖细胞中最大的二倍体细胞。因此,可以使用光学显微镜容易地细分观察分裂细胞中的细胞结构。在果蝇黑腹果蝇中,提供了先进和复杂的遗传技术(Ashburner等人,2004)。染色体分离和细胞分裂中的减数分裂缺陷出现在完成2< 减数分裂后精子细胞的细胞组织中。通过观察这种早期精子细胞,人们可以很容易地发现甚至微小的减数分裂异常(2012); 2012年; ...

A Bioimaging Pipeline to Show Membrane Trafficking Regulators Localized to the Golgi Apparatus and Other Organelles in Plant Cells
Author:
Date:
2015-09-05
[Abstract]  The plant Golgi apparatus is composed of numerous stacks of cisterna, designated as cis, medial, and trans Golgi cisternae; these stacks move within the cytoplasm along the actin cytoskeleton. Cis cisternae receive secretory products from endoplasmic reticulum (ER) and they subsequently progress through the stack to the trans cisternae, where they are sorted to other destinations, including cell wall, plasma membrane (PM), vacuoles, and chloroplasts. In addition, the plant Golgi apparatus plays a role of glycosylating proteins as well as synthesizing cell wall polysaccharides, such as hemicelluloses and pectins. This protocol describes procedures for imaging fluorescently-tagged proteins localized to the plant Golgi apparatus of Arabidopsis ... [摘要]  植物高尔基体包括许多叠状体,称为顺,内侧和反式高尔基这些堆栈在细胞质内沿着肌动蛋白细胞骨架移动。 Ctern 池从内质网(ER)接收分泌产物,并且随后通过堆叠进入反转池,在那里它们被分选到其他目的地,包括细胞壁,血浆膜(PM),液泡和叶绿体。此外,植物高尔基体起到糖基化蛋白质以及合成细胞壁多糖如半纤维素和果胶的作用。该协议描述了使用共聚焦激光显微镜(CLSM),全内反射荧光显微镜(TIRF)和高压的免疫金标记标记定位于拟南芥幼苗的植物高尔基体的荧光标记的蛋白质的程序冷冻/冷冻取代的样品通过透射电子显微镜(TEM)。我们特别关注长期时间推移成像和蛋白质本地化在高尔基内的子域。该方案还可以用于其他细胞器,组织和植物物种。

Comments