{{'Search' | translate}}
 

Carbenicillin (Disodium)

羧苄青霉素

Company: Gold Bio
Catalog#: C-103-5
Bio-protocol()
Company-protocol()
Other protocol()

Measurement of Intracellular Calcium Concentration in Pseudomonas aeruginosa
Author:
Date:
2016-12-05
[Abstract]  Characterization of the molecular mechanisms of calcium (Ca2+) regulation of bacterial physiology and virulence requires tools enabling measuring and monitoring the intracellular levels of free calcium (Ca2+in). Here, we describe a protocol optimized to use a recombinantly expressed Ca2+-binding protein, aequorin, for detecting Ca2+in in Pseudomonas aeruginosa. Upon binding to free Ca2+, aequorin undergoes chromophore oxidation and emits light, the log of which intensity linearly correlates with the amount of bound Ca2+, and therefore, can be used to measure the concentration of free Ca2+ available for binding. This protocol involves the introduction of the aequorin gene into P. ... [摘要]  钙的分子机制的表征(Ca 2+ 2+)调节细菌生理学和毒力需要能够测量和监测游离钙的细胞内水平的工具(Ca 2+ 2+ in )。在这里,我们描述了优化使用重组表达的Ca 2+ 2+结合蛋白水母发光蛋白的方案,用于检测 em>铜绿假单胞菌 。在结合游离Ca 2+ 2+时,水母发光蛋白经历发色团氧化并发射光,其强度与结合的Ca 2+ 2+的量线性相关,因此,可以可用于测量可用于结合的游离Ca 2+的浓度。该方案包括将水母发光蛋白基因导入em。铜绿假单胞菌,诱导脱辅基水母发光蛋白产生,用其发色团重建全酶并监测其发光。该方案允许在体内响应于各种刺激连续测量Ca <2> 浓度。 关键词:/strong>细胞内钙,调节,水母发光,发光,腔肠素,绿脓杆菌 [背景] Ca 2 + 调节P的生理学和毒力。铜绿假单胞菌(Guragain等人,2013; Patrauchan等人,2005; Sarkisova等人,2014),然而,Ca 2 + 调节的分子机制尚不清楚。为了表征这些机制,非常重要的是不仅测量Ca 2+中的Ca 2+的浓度([Ca 2+] + ]),但监测其响应各种刺激的变化。考虑到细胞生理学中的甚至微小的改变,[Ca 2 + ]可能改变(综述于[Dominguez等人, ]),测量[Ca 2+ 2+]需要特异性识别Ca ...

In vitro Real-time Measurement of the Intra-bacterial Redox Potential
Author:
Date:
2015-09-05
[Abstract]  All bacteria that live in oxygenated environments have to deal with oxidative stress caused by some form of exogenous or endogenous reactive oxygen species (ROS) (Imlay, 2013). Large quantities of ROS damage DNA, lipids and proteins which can eventually lead to bacterial cell death (Imlay, 2013). In contrast, smaller quantities of ROS can play more sophisticated roles in cellular signalling pathways affecting almost every process in the bacterial cell e.g. metabolism, stress responses, transcription, protein synthesis, etc. Previously, inadequate analytical methods prevented appropriate analysis of the intra-bacterial redox potential. Herein, we describe a method for the measurement of real-time changes to the intra-bacterial redox potential using redox-sensitive GFP ... [摘要]  所有存在氧合环境中的细菌都必须处理由某种形式的外源性或内源性活性氧(ROS)引起的氧化应激(Imlay,2013)。大量的ROS损伤DNA,脂质和蛋白质,其可以最终导致细菌细胞死亡(Imlay,2013)。相反,较少量的ROS可以在细胞信号传导途径中发挥更复杂的作用,影响几乎细菌细胞中的每一个过程,例如,代谢,应激反应,转录,蛋白质合成等 。以前,不充分的分析方法阻止了细菌内氧化还原电位的适当分析。在本文中,我们描述了使用氧化还原敏感性GFP(roGFP2)测量细菌内氧化还原电位的实时变化的方法(van der Heijden等人,2015)。 roGFP2蛋白被工程改造成含有特定的半胱氨酸残基,其在氧化时形成内部二硫键,导致蛋白构象的轻微改变(Hanson等人,2004)。这种移位导致两种不同的蛋白质同种型在分别在405nm和480nm下激发后具有不同的荧光激发光谱。因此,相应的405/480nm比率可以用作细菌内氧化还原电位的量度。比率量度分析排除了由于roGFP2浓度差异引起的变化,并且由于构象变化是可逆的,因此系统允许测量氧化以及还原条件。在该方案中,我们通过测量鼠伤寒沙门氏菌(鼠伤寒沙门氏菌)内的细菌内氧化还原电位来描述该系统,但该系统可以调整用于其他革兰氏阴性菌。

Comments