{{'Search' | translate}}
 

DifcoTM YPD Broth

YPD培养基,用于分子生物学的酵母的繁殖和维持

Company: BD
Catalog#: 242820
Bio-protocol()
Company-protocol()
Other protocol()

Single-step Precision Genome Editing in Yeast Using CRISPR-Cas9
Author:
Date:
2018-03-20
[Abstract]  Genome modification in budding yeast has been extremely successful largely due to its highly efficient homology-directed DNA repair machinery. Several methods for modifying the yeast genome have previously been described, many of them involving at least two-steps: insertion of a selectable marker and substitution of that marker for the intended modification. Here, we describe a CRISPR-Cas9 mediated genome editing protocol for modifying any yeast gene of interest (either essential or nonessential) in a single-step transformation without any selectable marker. In this system, the Cas9 nuclease creates a double-stranded break at the locus of choice, which is typically lethal in yeast cells regardless of the essentiality of the targeted locus due to inefficient non-homologous end-joining ... [摘要]  芽殖酵母中的基因组修饰已经非常成功,主要归功于其高度同源性的DNA修复机制。之前已经描述了几种用于修饰酵母基因组的方法,其中许多方法涉及至少两个步骤:插入选择标记并用该标记取代预期的修饰。在这里,我们描述了CRISPR-Cas9介导的基因组编辑方案,用于在没有任何选择标记的情况下在单步转化中修饰任何感兴趣的酵母基因(基本或非必需)。在该系统中,Cas9核酸酶在选择的基因座处产生双链断裂,这在酵母细胞中通常是致死的,而不管由于无效的非同源末端连接修复导致的靶基因座的重要性。该致死性通过使用源自PCR的修复模板的同源重组导致有效的修复。在涉及必需基因的情况下,用功能性等位基因编辑基因组病变的必要性作为额外的选择层。作为一个激励性的例子,我们描述了使用这种策略替代HEM2,一种必需的酵母基因,以及相应的人类直向同源物ALAD。

【背景】酿酒酵母(Baccharomyces cerevisiae,Baker's酵母)作为一种遗传易处理的生物体具有悠久的历史,并且有许多操作酵母基因组的方法。然而,直到最近,有必要应用选择以分离具有所需遗传改变的克隆(Kearse等人,2012; DiCarlo等人,2013; Lee等人,等,2015; ...

Differentiation of Naturally Produced Extracellular Membrane Vesicles from Lipid Aggregation by Glucuronoxylomannan Immunogold Transmission Electron Microscopy in Bacillus subtilis
Author:
Date:
2015-03-05
[Abstract]  Recently, membrane vesicle (MV) production was described in Gram-positive bacteria, which harbor a variety of components such as toxins, antibiotic resistance proteins, proteases, DNA, and immune modulators. Free lipids have the ability to form micelles, thus it is important to rule out spontaneous association of lipids into vesicle-like structures and rather, that MVs are produced naturally by a metabolically active cell. Here, we describe a protocol utilizing the polysaccharide, glucuronoxylomannan (GXM) from Cryptococcus neoformans (C. neoformans) as a marker to differentiate naturally produced MVs from vesicles that form spontaneously in the Gram-positive model organism, Bacillus subtilis (B. subtilis). MVs are purified from bacterial cultures grown ... [摘要]  最近,在革兰氏阳性细菌中描述了膜囊泡(MV)产生,其含有多种组分,例如毒素,抗生素抗性蛋白,蛋白酶,DNA和免疫调节剂。游离脂质具有形成胶束的能力,因此排除脂质自发缔合成囊泡样结构是重要的,并且更确切地说,MV由代谢活性细胞天然产生。在这里,我们描述了利用来自新隐孢子虫的多糖葡萄糖醛酸甘露聚糖(GXM)( C。新型隐球菌)作为标记物来区分天然产生的MV与自发形成的囊泡革兰氏阳性模式生物,枯草芽孢杆菌(<枯草芽孢杆菌)。从在GXM存在下生长的细菌培养物中纯化MV;由细胞天然产生的MV在管腔中不含有GXM,而在培养基中形成的囊泡结构可包封GXM,并且这可通过免疫金属透射电子显微镜可视化。

Comments