|
Author:
Date:
2021-04-05
[Abstract] Cation-chloride cotransporters (CCCs) mediate the coupled, electroneutral symport of cations such as Na+ and/or K+ with chloride across membrane. Among CCCs family, K-Cl cotransporters (KCC1-KCC4) extrude intracellular Cl- by the transmembrane K+ gradient. In humans, these KCCs play vital roles in the physiology of the nervous system and kidney. However, mechanisms underlying the KCCs specific properties remain poorly understood, partly because purification of membrane proteins is challenging. Here, we present the protocol for purifying the full-length KCC1 from HEK293F cells used in our recent publication (Liu et al., 2019). The procedure may be adapted for functional and structural studies.
[摘要] [摘要]阳离子-氯化物共转运蛋白(CCC)介导诸如Na +和/或K +的阳离子与氯离子在膜上的耦合,电中性共价。间幼儿中心家庭,K-CL协同转运蛋白(KCC1-KCC4)抽UDE细胞内氯-通过跨膜ķ +梯度。在人类中,这些KCC在神经系统和肾脏的生理中起着至关重要的作用。然而,特定的KCC性质保持基本机制知之甚少,部分是因为膜蛋白的纯化是具有挑战性的。在这里,我们介绍了从我们最近的出版物中使用的HEK293F细胞中纯化全长KCC1的方案(Liu等人,2019)。该程序可适用于功能和结构研究。
[背景]人类溶质载体12(SLC12 )基因家族编码阳离子的氯化物协同转运蛋白(CCCS)介导Cl组成的电中性同向转运-和阳离子的Na +或(和)K +跨越质膜。根据其转运特性和氨基酸序列定义,CCC可分为几个分支,包括两个Na-K-2Cl协同转运蛋白(NKCC1和NKCC2),一个Na-Cl协同转运蛋白(NCC)和四个K-Cl协同转运蛋白(KCC1-KCC4 )。CCC在细胞体积调节,肾脏盐分重吸收和神经元GABA能调节中起重要作用。CCC的结构,生化和生物物理研究涉及在去污剂溶解状态下蛋白质生产和稳定方面的挑战。杆状病毒转导HEK293F细胞(BacMam)系统是异源表达由Eric ...
|
|
Author:
Date:
2021-04-05
[Abstract] Secondary active transporters reside in cell membranes transporting polar solutes like amino acids against steep concentration gradients, using electrochemical gradients of ions as energy sources. Commonly, ensemble-based measurements of radiolabeled substrate uptakes or transport currents inform on kinetic parameters of transporters. Here we describe a fluorescence-based functional assay for glutamate and aspartate transporters that provides single-transporter, single-transport cycle resolution using an archaeal elevator-type sodium and aspartate symporter GltPh as a model system. We prepare proteo-liposomes containing reconstituted purified GltPh transporters and an encapsulated periplasmic glutamate/aspartate-binding protein, PEB1a, labeled with donor and acceptor fluorophores. We then ...
[摘要] [摘要]次级活性转运蛋白驻留在细胞膜中,利用离子的电化学梯度作为能量源,可针对陡峭的浓度梯度转运极性氨基酸(如氨基酸)。通常,基于集合的放射性标记底物摄取或转运电流的测量可确定转运蛋白的动力学参数。在这里,我们描述了一种基于荧光的谷氨酸和天冬氨酸转运蛋白功能测定方法,该方法使用古细菌升降剂型钠和天冬氨酸共转运蛋白Glt Ph作为模型系统,提供了单转运蛋白,单转运周期的分辨率。我们准备包含重组的纯化的Glt Ph转运蛋白和封装的周质谷氨酸/天冬氨酸结合蛋白,PEB1a,用供体和受体荧光团标记的蛋白脂质体。然后,我们将蛋白脂质体表面固定化,并使用单分子全内反射荧光(TIRF)显微镜测量随时间变化的运输依赖性荧光共振能量转移(FRET)效率变化。与放射性配体摄取测定法相比,该测定法在时间分辨率上提高了10-100倍。它还可以对不同转运周期步骤进行动力学表征,并识别转运蛋白种群内的动力学异质性。
[背景]膜驻留的二级主动转运蛋白或溶质载体(SLC)介导氨基酸,激素,神经递质,维生素和药物等溶质的细胞摄取。他们将集中的底物摄取与主要通过Na + / K + ATPases的作用维持的离子电化学梯度的能量上有利的耗散结合在一起(Lingrel and Kuntzweiler ...
|