|
Author:
Date:
2021-04-05
[Abstract] Microtubules (MT) are the most rigid component of the cytoskeleton. Nevertheless, they often appear highly curved in the cellular context and the mechanisms governing their overall shape are poorly understood. Currently, in vitro microtubule analysis relies primarily on electron microscopy for its high resolution and Total Internal Reflection Fluorescence (TIRF) microscopy for its ability to image live fluorescently-labelled microtubules and associated proteins. For three-dimensional analyses of microtubules with micrometer curvatures, we have developed an assay in which MTs are polymerized in vitro from MT seeds adhered to a glass slide in a manner similar to conventional TIRF microscopy protocols. Free fluorescent molecules are removed and the MTs are fixed by perfusion. The MTs can ...
[摘要] [摘要]微管(MT)是细胞骨架中最刚性的组成部分。然而,它们在细胞环境中经常显得高度弯曲,并且控制它们整体形状的机理了解甚少。当前,体外微管分析主要依靠电子显微镜进行高分辨率分析,而全内反射荧光(TIRF )显微镜则可以对活的荧光标记的微管和相关蛋白进行成像。为了对具有微米曲率的微管进行三维分析,我们开发了一种在体外聚合MT的检测方法 用类似于常规TIRF显微镜操作规程的方式将MT种子的MT粘附到载玻片上。除去游离的荧光分子,并通过灌注固定MTs。然后可以使用带有Airyscan模块的共聚焦显微镜观察MT,以获得更高的分辨率。该协议允许对保留其原始三维形状并与高分辨率免疫荧光检测兼容的微管进行成像。 [背景]微管(MT)是通过异源二聚体的组合制成的聚合物α和β微管蛋白,并且是细胞骨架的主要成分。他们参与了细胞功能的基本机制,如有丝分裂,细胞内转运,胞质分裂和细胞形态的维持(Akhmanova和Steinmetz,2015)。尽管MT本身具有很高的刚性,但它们通常会在细胞中弯曲并产生一些蛋白,从而弯曲微管(Brangwynne等人,2006; Bechstedt等人,2014; Leung等人,2020; Cuveillier等人,2020 ...
|
|
Author:
Date:
2021-03-05
[Abstract] An endogenous circadian clock system enables organisms to adapt to time-of-day dependent environmental changes. In consequence, most physiological processes exhibit daily rhythms of, e.g., energy metabolism, immune function, sleep, or hormone production. Hypothalamic circadian clocks have been identified to play a particular role in coordinating many of these processes. Primary neuronal cultures are widely used as a physiologically relevant model to study molecular events within neurons. However, as circadian rhythms include dynamic molecular changes over longer timescales that vary between individual cells, longitudinal measurement methods are essential to investigate the regulation of circadian clocks of hypothalamic neurons. Here we provide a protocol for generating primary ...
[摘要] [摘要]内源性生物钟系统使生物能够适应与时间相关的环境变化。结果,大多数生理过程表现出例如能量代谢,免疫功能,睡眠或激素产生的每日节律。下丘脑生物钟已被确认在协调许多这些过程中起特定作用。 原代神经元文化被广泛用作研究神经元内分子事件的生理相关模型。然而,由于昼夜节律包括较长时间范围内的动态分子变化,而这种变化在各个细胞之间会有所不同,因此纵向测量方法对于研究下丘脑神经元昼夜节律的调节至关重要。在这里,我们提供了用于生成表达昼夜节律性荧光素酶报道基因的下丘脑神经元文化的协议。通过执行生物发光测量,此类报告细胞可用于以高时间分辨率纵向监测细胞昼夜节律。
[背景]为了适应重复在其环境中的时间-日期依赖性变化,许多生物已开发出一种内源性生物钟系统调节行为和生理过程的24小时的节律(夏尔马,2003)。在哺乳动物中,一个昼夜节律性起搏器主要位于下丘脑上视交叉上核(SCN)。它与外部时间协调整个身体的细胞时钟调节。睡眠,食欲和新陈代谢的每日模式由下丘脑神经元中的细胞昼夜节律调节(Cedernaes等,2019)。
在哺乳动物细胞中,昼夜节律时钟由互锁的转录-翻译反馈环(TTFL)组成。在核心TTFL中,转录因子昼夜运动输出周期kaput(CLOCK)和脑和肌肉芳基碳氢化合物受体核转运蛋白样蛋白1(BMAL1或ARNTL)激活其自身阻遏物,周期(PER1-3)和隐色蛋白的表达(CRY1 ...
|