{{'Search' | translate}}
 

Dissecting microscope

Company: Leica
Catalog#: MZ6
Bio-protocol()
Company-protocol()
Other protocol()

Generation of Mouse Primary Hypothalamic Neuronal Cultures for Circadian Bioluminescence Assays
Author:
Date:
2021-03-05
[Abstract]  

An endogenous circadian clock system enables organisms to adapt to time-of-day dependent environmental changes. In consequence, most physiological processes exhibit daily rhythms of, e.g., energy metabolism, immune function, sleep, or hormone production. Hypothalamic circadian clocks have been identified to play a particular role in coordinating many of these processes. Primary neuronal cultures are widely used as a physiologically relevant model to study molecular events within neurons. However, as circadian rhythms include dynamic molecular changes over longer timescales that vary between individual cells, longitudinal measurement methods are essential to investigate the regulation of circadian clocks of hypothalamic neurons. Here we provide a protocol for generating primary

...
[摘要]  [摘要]内源性生物钟系统使生物能够适应与时间相关的环境变化。结果,大多数生理过程表现出例如能量代谢,免疫功能,睡眠或激素产生的每日节律。下丘脑生物钟已被确认在协调许多这些过程中起特定作用。 原代神经元文化被广泛用作研究神经元内分子事件的生理相关模型。然而,由于昼夜节律包括较长时间范围内的动态分子变化,而这种变化在各个细胞之间会有所不同,因此纵向测量方法对于研究下丘脑神经元昼夜节律的调节至关重要。在这里,我们提供了用于生成表达昼夜节律性荧光素酶报道基因的下丘脑神经元文化的协议。通过执行生物发光测量,此类报告细胞可用于以高时间分辨率纵向监测细胞昼夜节律。


[背景]为了适应重复在其环境中的时间-日期依赖性变化,许多生物已开发出一种内源性生物钟系统调节行为和生理过程的24小时的节律(夏尔马,2003)。在哺乳动物中,一个昼夜节律性起搏器主要位于下丘脑上视交叉上核(SCN)。它与外部时间协调整个身体的细胞时钟调节。睡眠,食欲和新陈代谢的每日模式由下丘脑神经元中的细胞昼夜节律调节(Cedernaes等,2019)。

在哺乳动物细胞中,昼夜节律时钟由互锁的转录-翻译反馈环(TTFL)组成。在核心TTFL中,转录因子昼夜运动输出周期kaput(CLOCK)和脑和肌肉芳基碳氢化合物受体核转运蛋白样蛋白1(BMAL1或ARNTL)激活其自身阻遏物,周期(PER1-3)和隐色蛋白的表达(CRY1 ...

Acidified Blue Ink-staining Procedure for the Observation of Fungal Structures Inside Roots of Two Disparate Plant Lineages
Author:
Date:
2020-10-20
[Abstract]   Identifying microscopic mycorrhizal fungal structures in roots, i.e., hyphae, vesicles and arbuscules, requires root staining procedures that are often time consuming and involves chemicals known to present health risks from exposure. By modifying established protocols, our root staining method stains roots using a safe ink- and vinegar-based staining solution, followed by a 2-16 h-long de-staining period. The entire procedure can be completed in less than 6 h (plus up to 16 h de-staining overnight) and roots are suitable for semi-permanent and permanent slide mounting for light microscopy. We tested our method on hundreds of wild-sourced roots from two different plant species: Lycopodiella inundata, a herbaceous clubmoss with tough water-resistant roots, and Sambucus ... [摘要]   [摘要]识别根中的微观菌根真菌结构,即菌丝、囊泡和丛枝,需要根染色程序,这通常是耗时的,涉及已知的化学物质,会带来健康风险。我们建立了一套安全的染色方法,用16-h染色法对根部进行染色,然后用改良的16-h法染色。整个过程可以在不到6小时内完成(加上16小时的脱色过夜),根适合于半永久性和永久性的载玻片进行光学显微镜检查。我们对来自两种不同植物的数百根野生根进行了测试:Lycopodiella inundata(一种具有坚韧耐水根的草本灌木丛)和一种温带木本灌木Sambucus nigra。这两种植物都与内生菌根共生,水淹木主要与毛霉细根内生菌(MucFRE)共生,黑穗链霉菌与丛枝菌根真菌(AMF)共生。在这里,我们描述了一种简单、高效、可重复和安全的方法来检测真菌结构的存在。

[背景]在这里,我们详细介绍了一种有效和安全的染色方法,用于分析1305根石松(图1A)的细根内生菌(FRE)(Kowal等人,2020年)和144根桑巴(Sambucus nigra)的粗根或AMF。我们还描述了如何清洗根部进行染色,并制备半永久性的载玻片,以分析这两种广泛存在于寄主植物根系中的菌根在陆地植物系统发育中的存在与否。
已建立的鉴定菌根真菌结构的染色方法通常使用台盼蓝或氯唑黑E染料(Phillips和Hayman,1970;Ager,1991;Brundrett等人,1994),被认为是致癌的。其他研究人员描述了一种更安全的替代方法,即使用墨醋染色溶液和KOH清洗(Vierheilig等人,1998年和2005年;Wilkes等人,2019年),并对这些技术进行了比较(Vierheilig等人,2005年),但没有人用明显更细的氟利昂(菌丝宽度 ...

Comments