| FRET-based Microscopy Assay to Measure Activity of Membrane Amino Acid Transporters with Single-transporter Resolution
|
|
Author:
Date:
2021-04-05
[Abstract] Secondary active transporters reside in cell membranes transporting polar solutes like amino acids against steep concentration gradients, using electrochemical gradients of ions as energy sources. Commonly, ensemble-based measurements of radiolabeled substrate uptakes or transport currents inform on kinetic parameters of transporters. Here we describe a fluorescence-based functional assay for glutamate and aspartate transporters that provides single-transporter, single-transport cycle resolution using an archaeal elevator-type sodium and aspartate symporter GltPh as a model system. We prepare proteo-liposomes containing reconstituted purified GltPh transporters and an encapsulated periplasmic glutamate/aspartate-binding protein, PEB1a, labeled with donor and acceptor fluorophores. We then ...
[摘要] [摘要]次级活性转运蛋白驻留在细胞膜中,利用离子的电化学梯度作为能量源,可针对陡峭的浓度梯度转运极性氨基酸(如氨基酸)。通常,基于集合的放射性标记底物摄取或转运电流的测量可确定转运蛋白的动力学参数。在这里,我们描述了一种基于荧光的谷氨酸和天冬氨酸转运蛋白功能测定方法,该方法使用古细菌升降剂型钠和天冬氨酸共转运蛋白Glt Ph作为模型系统,提供了单转运蛋白,单转运周期的分辨率。我们准备包含重组的纯化的Glt Ph转运蛋白和封装的周质谷氨酸/天冬氨酸结合蛋白,PEB1a,用供体和受体荧光团标记的蛋白脂质体。然后,我们将蛋白脂质体表面固定化,并使用单分子全内反射荧光(TIRF)显微镜测量随时间变化的运输依赖性荧光共振能量转移(FRET)效率变化。与放射性配体摄取测定法相比,该测定法在时间分辨率上提高了10-100倍。它还可以对不同转运周期步骤进行动力学表征,并识别转运蛋白种群内的动力学异质性。
[背景]膜驻留的二级主动转运蛋白或溶质载体(SLC)介导氨基酸,激素,神经递质,维生素和药物等溶质的细胞摄取。他们将集中的底物摄取与主要通过Na + / K + ATPases的作用维持的离子电化学梯度的能量上有利的耗散结合在一起(Lingrel and Kuntzweiler ...
|
|
|
| Chromatin Immunoprecipitation (ChIP) to Assess Histone Marks in Auxin-treated Arabidopsis thaliana Inflorescence Tissue
|
|
Author:
Date:
2020-12-05
[Abstract] Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) or high-throughput sequencing (ChIP-seq) has become the gold standard for the identification of binding sites of DNA binding proteins and the localization of histone modification on a locus-specific or genome-wide scale, respectively. ChIP experiments can be divided into seven critical steps: (A) sample collection, (B) crosslinking of proteins to DNA, (C) nuclear extraction, (D) chromatin isolation and fragmentation by sonication, (E) immunoprecipitation of histone marks by appropriate antibodies, (F) DNA recovery, and (G) identification of precipitated protein-associated DNA by qPCR or high-throughput sequencing. Here, we describe a time-efficient protocol that can be used for ChIP-qPCR experiments to study the ...
[摘要] [摘要]染色质免疫沉淀与定量PCR(ChIP -qPCR)或高通量测序(ChIP-seq )结合已成为鉴定DNA结合蛋白结合位点和在特定基因座上定位组蛋白修饰的金标准。或全基因组规模。ChIP实验可分为七个关键步骤:(A)样品收集,(B)蛋白质与DNA交联,(C)核提取,(D)染色质分离和f 超声处理的碎片化;(E)通过适当的抗体对组蛋白标记的免疫沉淀;(F)DNA的回收;(G)通过qPCR或高通量测序鉴定沉淀的蛋白质相关DNA。在这里,我们描述了一种可用于ChIP -qPCR实验的省时协议,以研究模型植物拟南芥幼花序中组蛋白修饰的定位。
[背景]真核基因组中的染色体中,其与组蛋白DNA结合形成染色质组织的。组蛋白与DNA之间的紧密相互作用阻碍了DNA与其他因素的可及性。因此,组蛋白相对于重要调控DNA序列的位置和组蛋白-DNA接触的强度可以隐藏或暴露提供另一层基因调控的基因。在染色质中,组蛋白和DNA均可被化学修饰(Zhou等,2010 ;Schübeler ,2015)。根据修饰的物理性质,染色质状态可以阻止或增强基础基因的转录(Kouzarides ,2007; Yang等,2014; Wu等,2015)。在植物中,染色质的表观遗传状态已被证明是响应发育或环境刺激的基因表达的关键决定因素(Yang等人,2014 ; Wu等人,2015 ; ...
|
|
|