{{'Search' | translate}}
 

Magnesium chloride (MgCl2)

Company: Merck
Catalog#: M8266
Bio-protocol()
Company-protocol()
Other protocol()

EmPC-seq: Accurate RNA-sequencing and Bioinformatics Platform to Map RNA Polymerases and Remove Background Error
Author:
Date:
2021-02-20
[Abstract]  

Transcription errors can substantially affect metabolic processes in organisms by altering the epigenome and causing misincorporations in mRNA, which is translated into aberrant mutant proteins. Moreover, within eukaryotic genomes there are specific Transcription Error-Enriched genomic Loci (TEELs) which are transcribed by RNA polymerases with significantly higher error rates and hypothesized to have implications in cancer, aging, and diseases such as Down syndrome and Alzheimer’s. Therefore, research into transcription errors is of growing importance within the field of genetics. Nevertheless, methodological barriers limit the progress in accurately identifying transcription errors. Pro-Seq and NET-Seq can purify nascent RNA and map RNA polymerases along the genome but cannot be

...
[摘要]  [摘要]转录错误可通过改变表观基因组并引起mRNA的错误整合而严重影响生物体内的代谢过程,从而将其翻译为异常的突变蛋白。此外,真核基因组内有特定转录错误富集的基因组基因座(TEELs),它们由RNA聚合酶与显著更高的错误率转录并推测为具有影响在癌症,老化和疾病例如唐氏综合征和阿尔茨海默'秒。因此,在遗传学领域对转录错误的研究越来越重要。尽管如此,方法上的障碍限制了准确识别转录错误的进展。Pro-Seq和NET-Seq可以沿基因组纯化新生RNA并绘制RNA聚合酶,但不能用于鉴定转录突变。在这里,我们本背景误差模型耦合的精密核圆形测序上运行(EMPC -SEQ),一种方法COMBIN荷兰国际集团测定和圆形测序核上运行与背景误差模型精确地检测新生转录错误和有效地辨别TEELs基因组中。

[背景]核糖核苷酸错掺导致的转录错误在所有活生物体中无处不在(Carey,2015)。假设每个信使RNA(mRNA)可以翻译2-4千次(Schwanhausser et al。,2011),并且许多特殊RNA在给定时间每个细胞仅表达一次(Islam et al。,2011; Pelechano et al。,2011)。,2010),即使是关键残基的单个转录错误也会使特定蛋白质的表达产生很大差异。另外,转录错误可加速蛋白质聚集,导致人类中与年龄有关的疾病(van ...

Cellulase and Macerozyme-PEG-mediated Transformation of Moss Protoplasts
Author:
Date:
2021-01-20
[Abstract]  This protocol describes the generation of protoplasts from protonemal tissue of the moss Physcomitrium patens (syn. Physcomitrella patens), using Cellulase ONOZUKA R10 and Macerozyme R10, followed by polyethylene glycol (PEG) mediated transformation. The protonemal tissue grown in liquid suspension was harvested and treated with enzyme cocktails mix of 1.5% Cellulase ONOZUKA R10 and 0.5% Macerozyme R10 to generate 1,8 million protoplasts within 3 h. [摘要]  [摘要]该方案描述从苔藓原丝体的原生质体组织的生成Physcomitrium藓(同义词小立碗藓),使用纤维素酶Onozuka R 10和离析酶R10,随后聚乙二醇(PEG)介导的转化。收获在液体悬浮液中生长的原质组织,并用1.5%Cellulase ONOZUKA R10和0.5%Macerozyme R10的酶混合物混合处理,在3小时内产生180万原生质体。

[背景]由于其在自然同源性定向修复中的效率,Physcomitrium patens非常适合用作植物实验系统,尤其是用于基因的异源表达,从而可以产生具有可预测特性和特征的转化体。此外,P.patens具有低成本培养的优势,并且可以在生物反应器中大量维护(Reski等人,2018)。的基因工程展叶剑叶藓细胞允许大规模生产天然产物和药物如的毒胡萝卜素和其它萜类的候选药物,这是很难的访问(西蒙森等人,2009) 。该协议显示了如何分离和转化从单倍体原生质丝释放的彭定康原生质体。P. patens已被用于原生质体的产生和PEG介导的转化。在之前的实验protoplastation上展叶剑叶藓中与酶进行崩溃酶从担子菌纲(湾。等2009,;巴赫等人,2014) ...

Chromatin Immunoprecipitation (ChIP) to Assess Histone Marks in Auxin-treated Arabidopsis thaliana Inflorescence Tissue
Author:
Date:
2020-12-05
[Abstract]  Chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) or high-throughput sequencing (ChIP-seq) has become the gold standard for the identification of binding sites of DNA binding proteins and the localization of histone modification on a locus-specific or genome-wide scale, respectively. ChIP experiments can be divided into seven critical steps: (A) sample collection, (B) crosslinking of proteins to DNA, (C) nuclear extraction, (D) chromatin isolation and fragmentation by sonication, (E) immunoprecipitation of histone marks by appropriate antibodies, (F) DNA recovery, and (G) identification of precipitated protein-associated DNA by qPCR or high-throughput sequencing. Here, we describe a time-efficient protocol that can be used for ChIP-qPCR experiments to study the ... [摘要]  [摘要]染色质免疫沉淀与定量PCR(ChIP -qPCR)或高通量测序(ChIP-seq )结合已成为鉴定DNA结合蛋白结合位点和在特定基因座上定位组蛋白修饰的金标准。或全基因组规模。ChIP实验可分为七个关键步骤:(A)样品收集,(B)蛋白质与DNA交联,(C)核提取,(D)染色质分离和f 超声处理的碎片化;(E)通过适当的抗体对组蛋白标记的免疫沉淀;(F)DNA的回收;(G)通过qPCR或高通量测序鉴定沉淀的蛋白质相关DNA。在这里,我们描述了一种可用于ChIP -qPCR实验的省时协议,以研究模型植物拟南芥幼花序中组蛋白修饰的定位。


[背景]真核基因组中的染色体中,其与组蛋白DNA结合形成染色质组织的。组蛋白与DNA之间的紧密相互作用阻碍了DNA与其他因素的可及性。因此,组蛋白相对于重要调控DNA序列的位置和组蛋白-DNA接触的强度可以隐藏或暴露提供另一层基因调控的基因。在染色质中,组蛋白和DNA均可被化学修饰(Zhou等,2010 ;Schübeler ,2015)。根据修饰的物理性质,染色质状态可以阻止或增强基础基因的转录(Kouzarides ,2007; Yang等,2014; Wu等,2015)。在植物中,染色质的表观遗传状态已被证明是响应发育或环境刺激的基因表达的关键决定因素(Yang等人,2014 ; Wu等人,2015 ; ...

Comments