| Affinity Purification of GO-Matryoshka Biosensors from E. coli for Quantitative Ratiometric Fluorescence Analyses
|
|
Author:
Date:
2020-10-05
[Abstract] Genetically encoded biosensors are powerful tools for quantitative visualization of ions and metabolites in vivo. Design and optimization of such biosensors typically require analyses of large numbers of variants. Sensor properties determined in vitro such as substrate specificity, affinity, response range, dynamic range, and signal-to-noise ratio are important for evaluating in vivo data. This protocol provides a robust methodology for in vitro binding assays of newly designed sensors. Here we present a detailed protocol for purification and in vitro characterization of genetically encoded sensors, exemplified for the His affinity-tagged GO-(Green-Orange) MatryoshCaMP6s calcium sensor. GO-Matryoshka sensors are based on single-step insertion ...
[摘要] [摘要]遗传编码的生物传感器是强大的工具为离子和代谢物的定量可视化在体内。设计和优化此类生物传感器通常需要分析大量变体。体外确定的传感器特性,例如底物特异性,亲和力,响应范围,动态范围和信噪比,对于评估体内数据很重要。该协议为新设计的传感器的体外结合测定提供了可靠的方法。这里我们提出了一个详细的协议用于纯化和体外表征的遗传编码的传感器,例示的His亲和标记的GO-(绿橙色)MatryoshCaMP6s钙传感器。GO-Matryoshka传感器基于在感兴趣的结合蛋白内一步插入一个包含两个嵌套荧光蛋白,圆形排列的荧光绿色FP(cpGFP )和Large Stoke Shift LSSmOrange的盒的方法,从而产生了利用被分析物触发的比例式传感器cpGFP的荧光变化。
[背景技术]将绿色荧光蛋白(GFP)在1962年被鉴定在水母水母维多利亚(下村等人,1962) 。30年后,描述了其首次用作报道基因(Chalfie等,1994)。自从发现以来,GFP变体和其他荧光蛋白为生物科学的主要进步做出了巨大贡献,并且现在已成为生物医学研究中的常用工具(Frommer等,2009)。
各种荧光蛋白(FP)和FP变异体已被用作报道分子或与所有生命王国的生物体中的蛋白融合(Chudakov等,2010 ;Valeur和Berberan- ...
|
|
|
| Site-specific Labeling of B Cell Receptor and Soluble Immunoglobulin
|
|
Author:
Date:
2020-09-20
[Abstract] B lymphocyte activation is regulated by its membrane-bound B cell receptors (BCRs) upon recognizing diverse antigens. It is hypothesized that antigen binding would trigger conformational changes within BCRs, followed by a series of downstream signaling activation. To measure the BCR conformational changes in live cells, a fluorescent site-specific labeling technique is preferred. Genetically encoded fluorescent tags visualize the location of the target proteins. However, these fluorescent proteins are large (~30 kDa) and would potentially perturb the conformation of BCRs. Here, we describe the general procedures of utilizing short tag-based site-specific labeling methodologies combining with fluorescence resonance energy transfer (FRET) assay to monitor the conformational changes within ...
[摘要] [摘要 ] 识别各种抗原后,B淋巴细胞的活化受其膜结合B细胞受体(BCR)的调节。假设抗原结合将触发BCR内的构象变化,随后引发一系列下游信号激活。为了测量活细胞中的BCR构象变化,首选荧光位点特异性标记技术。遗传编码的荧光标签可视化目标蛋白的位置。但是,这些荧光蛋白很大(〜30 k Da ),可能会干扰BCR的构象。在这里,我们描述了利用基于短标签的位点特异性标记方法与荧光共振能量转移(FRET)分析相结合来监视BCR细胞外域内抗原结合时构象变化的一般程序。
[背景 ] B淋巴细胞是负责产生针对病理从识别由细胞膜抗原所产生的保护性抗体的表达的B细胞受体(BCRS)。BCR复合物包含膜结合免疫球蛋白(mIg )和Igα和Igβ的非共价连接的异二聚体。所述mIg的由两个替代轻链和两个免疫球蛋白重链。所述mIg的重链含有胞外结构域,跨膜结构域,和细胞内结构域。在胞外mIg 的N-末端结构域,有两个可变的抗原结合基序,其后是恒定结构域(Reth,1992)。就IgM-BCR的重链而言,它包含4个域,即Cμ1,Cμ2,Cμ3和Cμ4(图1)。重链和轻链多肽中的结构可变域形成了抗体特有的抗原结合位点。例如,VRC01广泛中和抗体(bnAbs ...
|
|
|