| Bioorthogonal Labeling and Chemoselective Functionalization of Lung Extracellular Matrix
|
|
Author:
Date:
2021-02-20
[Abstract] Decellularized extracellular matrix (ECM) biomaterials derived from native tissues and organs are widely used for tissue engineering and wound repair. To boost their regenerative potential, ECM biomaterials can be functionalized via the immobilization of bioactive molecules. To enable ECM functionalization in a chemoselective manner, we have recently reported an effective approach for labeling native organ ECM with the click chemistry-reactive azide ligand via physiologic post-translational glycosylation. Here, using the rat lung as a model, we provide a detailed protocol for in vivo and ex vivo metabolic azide labeling of the native organ ECM using N-Azidoacetylgalactosamine-tetraacylated (Ac4GalNAz), together with procedures for decellularization and labeling characterization. Our ...
[摘要] [摘要]源自天然组织和器官的脱细胞细胞外基质(ECM)生物材料被广泛用于组织工程和伤口修复。为了增强其再生潜力,可以通过固定生物活性分子来使ECM生物材料功能化。为了使ECM以化学选择性的方式实现功能化,我们最近报告了一种有效的方法,可通过生理学上的翻译后糖基化,用点击化学反应的叠氮化物配体标记天然器官ECM 。在此,使用大鼠肺为模型,我们提供一种用于详细方案在体内和离体代谢叠氮化物使用N- Azidoacetylgalactosamine-tetraacylated天然器官ECM的标记(AC 4GalNAz),以及用于脱细胞和标记表征的程序。我们的方法可以在体内三天内或离体器官培养期间的一天之内进行特异性而稳定的ECM标记。脱细胞后,所得的ECM标记保持稳定。通过我们的方法,ECM生物材料可以用所需的炔烃修饰的生物分子(例如生长因子和糖胺聚糖)进行功能化,以用于组织工程和再生应用。
关键字:细胞外基质,脱细胞,生物正交,化学选择性功能化,点击化学,肺
[背景]细胞外基质(ECM)是由特定组织或器官的非细胞成分组成的水合网络支架,在通过其所包含的生物活性成分(例如纤维蛋白,生长)支持住宅细胞的活动中起关键作用。因子和糖胺聚糖(GAG)(Theocharis et ...
|
|
|
| Immunoprecipitation of Acetyl-lysine and Western Blotting of Long-chain acyl-CoA Dehydrogenases and Beta-hydroxyacyl-CoA Dehydrogenase in Palmitic Acid Treated Human Renal Tubular Epithelial Cells
|
|
Author:
Date:
2020-09-20
[Abstract] As one of the main energy metabolism organs, kidney has been proved to have high energy requirements and are more inclined to fatty acid metabolism as the main energy source. Long-chain acyl-CoA dehydrogenases (LCAD) and beta-hydroxyacyl-CoA dehydrogenase (beta-HAD), key enzymes involved in fatty acid oxidation, has been identified as the substrate of acetyltransferase GCN5L1 and deacetylase Sirt3. Acetylation levels of LCAD and beta-HAD regulate its enzymes activity and thus affect fatty acid oxidation rate. Moreover, immunoprecipitation is a key assay for the detection of LCAD and beta-HAD acetylation levels. Here we describe a protocol of immunoprecipitation of acetyl-lysine and western blotting of LCAD and beta-HAD in palmitic acid treated HK-2 cells (human renal tubular epithelial ...
[摘要] [摘要] 甲作为肾脏的主要能量代谢器官之一,肾脏已被证明具有很高的能量需求,并且更倾向于将脂肪酸代谢为主要能量来源。 长链酰基辅酶A脱氢酶(LCAD)和Beta-羟酰基 -CoA脱氢酶(β-HAD),涉及的关键酶脂肪酸氧化,已被确定为乙酰转移酶GCN5L1和脱乙酰酶Sirt3的底物。 LCAD和β-HAD的乙酰化水平调节其酶的活性,从而影响脂肪酸的氧化速率。 此外,免疫沉淀是检测LCAD和β-HAD乙酰化水平的关键方法。在这里,我们描述了在棕榈酸处理的HK-2细胞(人肾小管上皮细胞)中乙酰赖氨酸的免疫沉淀以及LCAD和β-HAD的免疫印迹实验。 该方案为读者提供了清晰的步骤,因此该方法可用于检测各种蛋白质的乙酰化水平。
[背景 ] 翻译后修饰(PT Ms)使细胞具有高度动态的机制来调节细胞途径(Zhao 等,2010)。 乙酰化已成为主要的翻译后蛋白质修饰之一。越来越多的证据小号指示乙酰化对手磷酸化的线粒体调控修改(Henriksen的等人,2012) 。 过线粒体蛋白质的60%被乙酰化,作为声明,这是参与能量代谢例如三羧酸(TCA)循环,氧化磷酸化(OXPHOS),脂肪酸氧化和氨基酸代谢(Hirschey 等人,2010 ; ...
|
|
|