{{'Search' | translate}}
 

PowerPac Basic Power Supply

Company: Bio-Rad
Catalog#: 1645050
Bio-protocol()
Company-protocol()
Other protocol()

Rapid Genome Engineering of Pseudomonas Assisted by Fluorescent Markers and Tractable Curing of Plasmids
Author:
Date:
2021-02-20
[Abstract]  

Precise genome engineering has become a commonplace technique for metabolic engineering. Also, insertion, deletion and alteration of genes and other functional DNA sequences are essential for understanding and engineering cells. Several techniques have been developed to this end (e.g., CRISPR/Cas-assisted methods, homologous recombination, or λ Red recombineering), yet most of them rely on the use of auxiliary plasmids, which have to be cured after the editing procedure. Temperature-sensitive replicons, counter-selectable markers or repeated passaging of plasmid-bearing cells have been traditionally employed to circumvent this hurdle. While these protocols work reasonably well in some bacteria, they are not applicable for other species or are time consuming and laborious. Here, we present

...
[摘要]  [摘要]精确的基因组工程已成为代谢工程的一种普遍技术。同样,基因和其他功能性DNA序列的插入,缺失和改变对于理解和改造细胞也是必不可少的。几种技术已经发展到该端部(例如,CRISPR / CAS-辅助方法,同源重组,或 λ 红色重组),但其中大多数依赖于辅助质粒的使用,必须在编辑程序后将其固化。传统上已采用对温度敏感的复制子,反向选择标记或带有质粒的细胞的重复传代来规避这一障碍。尽管这些协议在某些细菌中可以很好地发挥作用,但它们不适用于其他物种,或者既费时又费力。在这里,我们提出了快速和通用的荧光假单胞菌荧光标记辅助基因组编辑协议,然后通过用户控制的质粒复制干净固化辅助质粒。一种荧光标记有助于鉴定基因组编辑的菌落,而第二种报道分子能够检测无质粒的细菌克隆。该协议不仅是用于假单胞菌物种的最快方法,而且可以轻松地适应任何类型的基因组修饰,包括序列删除,插入和替换。



图形概要:

带有可治愈质粒的假单胞菌的快速基因组工程


[背景]靶向,精确的基因组操纵技术已经大大推进了微生物工程领域。这样的方法不仅允许评估基因型与表型的关系,而且使微生物细胞工厂的复杂工程化成为可能。近年来,CRISPR / Cas9方法为真核生物的精确基因组工程铺平了道路。在细菌中,CRISPR / ...

Electrophoretic Mobility Shift Assay of in vitro Phosphorylated RNA Polymerase II Carboxyl-terminal Domain Substrates
Author:
Date:
2020-06-20
[Abstract]  Eukaryotic RNA polymerase II transcribes all protein-coding mRNAs and is highly regulated. A key mechanism directing RNA polymerase II and facilitating the co-transcriptional processing of mRNAs is the phosphorylation of its highly repetitive carboxyl-terminal domain (CTD) of its largest subunit, RPB1, at specific residues. A variety of techniques exist to identify and quantify the degree of CTD phosphorylation, including phosphorylation-specific antibodies and mass spectrometry. Electrophoretic mobility shift assays (EMSAs) have been utilized since the discovery of CTD phosphorylation and continue to represent a simple, direct, and widely applicable approach for qualitatively monitoring CTD phosphorylation. We present a standardized method for EMSA analysis of recombinant GST-CTD ... [摘要]  [摘要 ] 真核RNA聚合酶II转录所有编码蛋白质的mRNA,并且受到高度调节。指导RNA聚合酶II并促进mRNA的共转录加工的关键机制是其高度重复的羧基末端结构域(CTD)的磷酸化。最大的亚基RPB1位于特定残基。存在多种鉴定和定量CTD磷酸化程度的技术,包括磷酸化特异性抗体和质谱法。自发现CTD磷酸化和本文提出了一种标准化的方法,用于EMSA分析被多种CTD激酶磷酸化的重组GST-CTD底物的EMSA方法,以及在变性/还原和还原条件下分析样品的策略。提供了半本地条件。此方法表示简单,直接,以及使用分子生物学实验室通用的设备监测重组底物中CTD磷酸化的可重现方法,该设备可轻松应用于下游分析,包括免疫印迹和质谱分析。

[背景 ] 真核生物RNA聚合酶II(RNAPII)产生所有蛋白质编码的mRNA,小核,小核仁,和许多微小RNA (杰罗尼莫等,2013;梅菲尔德。等,2016) 。各种机制中规范RNAPII活动要赋予特异性基因表达和促进生物处理工艺。在这些是直接翻译后修饰中RNAPII自己在形式的磷酸化(梅菲尔德等,2016) ,脯氨酰异构(梅菲尔德等,2015) ,甲基化(迪亚斯等人,2015年)和乙酰化(交银施罗德等,2013) 。一些研究最多的修饰是磷酸化的C端结构域RNAPII最大的亚基RPB1中(CTD) ...

Comments