{{'Search' | translate}}
 

D-glucose

Company: Sigma
Catalog#: G5767-500G
Bio-protocol()
Company-protocol()
Other protocol()

Method for Prolonged Incubation of Brain Slices
Author:
Date:
2020-07-20
[Abstract]  Slices of neuronal tissue maintain a high degree of topographical and functional properties of neurons and glia and therefore are extensively used for measurements of neuronal activity at the molecular, cellular and network levels. However, the lifespan of slice preparations is narrow, averaging of 6-8 hours. Moreover, the average viability of brain slices varies according to animal age and region of interest, leading to the high variability and low reproducibility of recorded data.

Previous techniques to increase the viability of brain slices focused on reducing cytotoxicity by chemical means, including alterations of the artificial cerebrospinal fluid (aCSF) composition to alleviate the direct damage of the slicing procedure or adding protective antioxidants to reduce ...
[摘要]  [摘要 ] 神经元组织的切片保持了神经元和神经胶质的高度地形和功能特性,因此被广泛用于在分子,细胞和网络水平上测量神经元的活性。然而,切片制剂的寿命很窄,平均为6-8小时。而且,脑切片的平均生存力会根据动物的年龄和目标区域而变化,从而导致记录数据的高变异性和低再现性。

先前增加脑切片活力的技术集中于通过化学手段降低细胞毒性,包括改变人工脑脊液(aCSF )成分以减轻切片过程的直接损害或添加保护性抗氧化剂以减少细胞退化。在该协议中,我们将体温过低与恢复室中aCSF 条件(pH,温度和细菌水平)的牢固控制结合使用,以显着延长切片的生存能力。

考虑到其用途的广度,提高切片的生存能力和寿命可以大大提高数据的可重复性,并减少神经生理学研究中使用的动物的成本,时间和数量。

[背景 ] 神经组织切片提供基本的神经科学研究独特的优势,因为它使神经网络活动的直接调查和药理化合物对中枢神经系统的影响。因此,迫切需要为实验目的以最高质量制备和维持切片的活力。神经元切片的生存能力取决于几个内在和外在因素(Buskila 等人,2014),根据切片过程可将其分为三个阶段:切片前(切片前),切片中(切片)和切片后切片)切片程序。在切片前降低切片活力的主要因素包括局部缺血和缺氧,这是由于消除了持续供血引起的(Buskila et ...

FRET Reporter Assays for cAMP and Calcium in a 96-well Format Using Genetically Encoded Biosensors Expressed in Living Cells
Author:
Date:
2020-06-05
[Abstract]  Stimulation of G protein-coupled receptors (GPCR) by hormones and neurotransmitters elicits cellular responses, many of which result from alterations in the concentrations of cytosolic cAMP and Ca2+. Here, we describe a microplate reader fluorescence resonance energy transfer (FRET) assay that uses the genetically encoded biosensors H188 and YC3.60 so that it is possible to monitor the kinetics with which alterations of [cAMP] or [Ca2+] occur in monolayers or suspensions of living cells exposed to GPCR agonists. This protocol uses HEK293 cell lines doubly transfected with a FRET biosensor and a recombinant GPCR of interest (e.g., glucagon receptors, CCK2 receptors, or NPY2R receptors). The protocol allows for rapid screening of small molecule GPCR ... [摘要]  [摘要] 激素和神经递质刺激G蛋白偶联受体(GPCR)引起细胞反应,其中许多是由于胞质cAMP和Ca 2+ 浓度的变化所致。在这里,我们描述了酶标仪的荧光共振能量转移使用遗传编码的生物传感器H188和YC3.60进行FRET)分析,从而可以监测暴露于GPCR激动剂的活细胞的单层或悬浮液中[cAMP]或[Ca 2+ ]发生变化的动力学。该协议使用FRET 生物传感器和感兴趣的重组GPCR 双重转染的HEK293细胞系(例如 ,胰高血糖素受体,CCK 2 受体或NPY2R受体)。该方案可快速筛选小分子GPCR 激动剂和拮抗剂,它还可用于发现具有GPCR活化作用的合成单,双和三激动肽。属性。

[背景] 活细胞荧光共振能量转移(FRET)分析结合显微镜和数字成像技术通常用于监测cAMP和Ca 2+的水平响应GPCR激动剂刺激而波动的动力学。另一种不使用显微镜的方法,而是使用自动荧光分光光度计和活细胞的单层或悬浮液,以96孔格式基于FRET的cAMP和Ca 2+ 的检测。该方案使用基因编码的生物传感器,以实现平均动力学可以在已知浓度应用GPCR激动剂的条件下,使用酶标仪实时获得药理研究数据。这些FRET分析使用稳定表达cAMP生物传感器H188(Klarenbeek 等人,2015 )或Ca的细胞系2+ 生物传感器YC3.60(Nagai ...

Comments