| Confocal and Super-resolution Imaging of RNA in Live Bacteria Using a Fluorogenic Silicon Rhodamine-binding Aptamer
|
|
Author:
Date:
2020-05-05
[Abstract] Genetically encoded light-up RNA aptamers have been shown to be promising tools for the visualization of RNAs in living cells, helping us to advance our understanding of the broad and complex life of RNA. Although a handful of light-up aptamers spanning the visible wavelength region have been developed, none of them have yet been reported to be compatible with advanced super-resolution techniques, mainly due to poor photophysical properties of their small-molecule fluorogens. Here, we describe a detailed protocol for fluorescence microscopy of mRNA in live bacteria using the recently reported fluorogenic silicon rhodamine binding aptamer (SiRA) featuring excellent photophysical properties. Notably, with SiRA, we demonstrated the first aptamer-based RNA visualization using super-resolution ...
[摘要] [摘要 ] 遗传编码的点亮适体是显示活细胞中RNA的有前途的工具,可帮助我们加深对RNA广泛而复杂的生命的理解。可见光波长区已经被开发,他们都没有然而,据报道,在兼容先进的超分辨率技术,主要是由于不良的光物理性质其小分子荧光团。在这里,我们描述了一个详细的协议对于荧光显微镜mRNA的使用最近报道的具有优异光物理性质的荧光罗丹明结合适体(SiRA )在活细菌中进行检测。值得注意的是,我们利用SiRA 展示了首个使用超分辨率(STED)显微镜进行的基于适体的RNA可视化。这种成像方法可能特别有价值用于可视化原核生物中的RNA,因为细菌的大小仅比光学分辨率大几倍 传统显微镜的分辨率。
[背景 ] 可视化的具体RNA分子通过荧光显微镜具有不可估量的价值在过去二十年中扩大我们的知识RNA功能内的细胞在时空精气神(特亚吉,2009年;夏等人,2017年),由于缺乏。固有的荧光RNA,用于活细胞成像的荧光RNA标记工具的开发以及它们对最新显微镜的适应性 –特别是对于超分辨率显微镜– 势在必行。超分辨率显微镜(SRM)对于原核系统中的RNA成像特别有吸引力,因为细菌很小(〜2.5MYU中号长,0.5-1〜MYU 中号宽)和分辨率的标准荧光显微镜被限制在200〜300〜牛米,由于衍射极限光(Reshes ...
|
|
|
| In vivo Quantification of Alkanes in Escherichia coli
|
|
Author:
Date:
2020-04-20
[Abstract] Microbial production of alkanes employing synthetic biology tools has gained tremendous attention owing to the high energy density and similarity of alkanes to existing petroleum fuels. One of the most commonly studied pathways includes the production of alkanes by AAR (acyl-ACP (acyl carrier protein) reductase)-ADO (aldehyde deformylating oxygenase) pathway. Here, the intermediates of fatty acid synthesis pathway are used as substrate by the AAR enzyme to make fatty aldehyde, which is then deformylated by ADO to make linear chain alkane. However, the variation in substrate availability to the first enzyme of the pathway, i.e., AAR, via fatty acid synthesis pathway and low turnover of the ADO enzyme make calculation of yields and titers under in vivo conditions extremely ...
[摘要] [摘要] 由于烷烃的高能量密度和与现有石油燃料的相似性,使用合成生物学工具生产烷烃的微生物受到了广泛关注。最常研究的途径之一是通过AAR(酰基-ACP (酰基)载体蛋白)还原酶)-ADO(醛Deformylating 加氧酶)途径。在这里,中间体脂肪酸合成途径被用作基材由AAR Enzym E要使脂肪醛,然后是Deformylated 通过ADO,使线性链烷烃。但是,即该途径的第一种酶的底物利用率的变化,即,AAR,通过脂肪酸合成途径和ADO酶的低周转率,使得在体内条件下的产量和效价的计算极为困难。在体内测定中,将确定的ADO酶底物外加到培养基中有助于监测菌体的流入。因此,该底物提供了更准确的产物收率测量方法。在此方案中,我们包括用于实施体内测定法以监测大肠杆菌中烷烃生产的详细指南。
[背景] 利用工程微生物生产烷烃的研究已广受欢迎,因为它提供了一种有吸引力的替代方案,可减少对化石燃料的依赖,同时减轻气候变化的影响(Lee 等,2008;Knothe ,2010; Lu,2010; Schirmer 等。人,2010;谭等人。,2011)各种途径已被发现或人工Assemb ...
|
|
|