{{'Search' | translate}}
 

Precision cover glasses thickness No. 1.5H (tol. ± 5 μm)

Company: Paul Marienfeld
Catalog#: 0107032
Bio-protocol()
Company-protocol()
Other protocol()

Characterization of Immunological Niches within Peyer’s Patches by ex vivo Photoactivation and Flow Cytometry Analysis
Author:
Date:
2020-03-20
[Abstract]  T follicular helper (Tfh) cells regulate B cell selection for entry into the germinal center (GC) reaction or for differentiation into antibody forming cells. This process takes place at the border between the T and B zones in lymphoid organs and involves physical contacts between T and B cells. During these interactions, T cells endow the B cells with selection signals that promote GC seeding or plasmablast differentiation based on their B cell receptor affinity. In Peyer’s patches (PPs), T cells promote B cell colonization of the subepithelial dome (SED) without effective affinity-based clonal selection. To specifically characterize the T cell population that resides within the SED niche, we performed ex vivo photoactivation of the SED compartment followed by flow cytometry ... [摘要]  [摘要] T卵泡辅助细胞(Tfh )调节B细胞的选择,使其进入生发中心(GC)反应或分化为抗体形成细胞。此过程发生在淋巴器官的T和B区之间的边界,涉及T和B细胞之间的物理接触。在这些相互作用中,T细胞赋予B细胞选择信号,这些信号根据其B细胞受体亲和力促进GC接种或成浆细胞分化。在Peyer氏斑(PPs)中,T细胞在没有有效亲和力的情况下促进上皮下穹sub (SED)的B细胞定殖。 ed克隆选择。为了具体表征驻留在SED利基空间中的T细胞群体,我们按照本方案中所述对SED隔室进行了离体光激活,然后进行了标记细胞的流式细胞仪分析。该技术将空间和细胞信息整合到了免疫小生境研究中,可以适应各种实验系统。

【背景技术】亲和力成熟是血清抗体对特定抗原的亲和力随时间而增加的过程,这是通过在生发中心(GC)中选择带有高亲和力BCR的B细胞来实现的。增加抗体亲和力通过体细胞超突变和基于亲和力的选择,这由T滤泡辅助(编排的处理的反复循环介导的TFH )细胞奥普雷亚;(开普勒和Perelson,1993 和Perelson,1997; Victora和Nussenzweig, 2012)。GC由两个微观解剖部位组成;暗区(B细胞增殖并获得体细胞超突变)和亮区(B细胞与相关抗原和T细胞相互作用)。尽管活体成像技术能够确定GC中的免疫细胞动力学(Allen 等,2007; ...

Optical Clearing and Index Matching of Tissue Samples for High-resolution Fluorescence Imaging Using SeeDB2
Author:
Date:
2018-10-20
[Abstract]  Tissue clearing techniques are useful for large-scale three-dimensional fluorescence imaging of thick tissues. However, high-resolution imaging deep inside tissues has been challenging, as it is extremely sensitive to light scattering and spherical aberrations. Here, we present a water-based optical clearing and mounting media, SeeDB2, which is designed for high numerical aperture (NA) objective lenses with oil or glycerol immersion. Using quick and simple soaking procedures, the refractive indices of samples can be matched either to that of immersion oil (1.52) or glycerol (1.46), thus minimizing light scattering and spherical aberrations. Fine morphology and various fluorescent proteins are highly preserved during the clearing and imaging process. Our method is useful for the ... [摘要]  组织清除技术可用于厚组织的大规模三维荧光成像。然而,高分辨率成像深层组织一直是一个挑战,因为它对光散射和球面像差极为敏感。在这里,我们提出了一种水基光学清除和安装介质SeeDB2,它是专为高数值孔径(NA)物镜和油或甘油浸泡而设计的。使用快速简单的浸泡程序,样品的折射率可以与浸油(1.52)或甘油(1.46)相匹配,从而最大限度地减少光散射和球面像差。在清理和成像过程中,高度保留了良好的形态和各种荧光蛋白。我们的方法可用于使用共聚焦和超分辨率显微镜在突触分辨率下的神经元电路的三维荧光成像。 SeeDB2也可用作荧光蛋白超分辨率成像的封固介质。
【背景】生物组织以3D组织。此外,许多重要的细胞机器,例如,例如,神经元中的突触,是亚微米级的。因此,对用于亚微米级3D成像的方法的需求不断增加。串联电子显微镜技术(例如>,FIB-SEM或SBF-SEM)很有前景,但它们无法充分利用现代生命科学中可用的基因荧光标记工具。为了利用荧光显微镜促进3D成像,近年来已经开发了许多组织清除技术(Richardson和Lichtman,2015和2017)。它们专为大规模3D成像而设计,其中一些可用于全脑,甚至是固定样品的全身尺度荧光成像,结合共焦,双光子或光片显微镜。然而,其中许多尚未针对高分辨率成像进行全面优化。
在荧光显微镜中,横向分辨率( d >)给出如下:
d ...

Comments