{{'Search' | translate}}
 

P1000 micropipet

Company: Nichiryo
Catalog#: NPX-1000
Bio-protocol()
Company-protocol()
Other protocol()

In vitro Time-lapse Imaging of Primary Cilium in Migrating Neuroblasts
Author:
Date:
2020-11-20
[Abstract]  Neuronal migration is a critical step for the development of neuronal circuits in the brain. Immature new neurons (neuroblasts) generated in the postnatal ventricular-subventricular zone (V-SVZ) show a remarkable potential to migrate for a long distance at a high speed in the postnatal mammalian brain, and are thus a powerful model to analyze the molecular and cellular mechanisms of neuronal migration. Here we describe a methodology for in vitro time-lapse imaging of the primary cilium and its related structures in migrating V-SVZ-derived neuroblasts using confocal or superresolution laser-scanning microscopy. The V-SVZ tissues are dissected from postnatal day 0-1 (P0-1) mouse brains and dissociated into single cells by trypsinization and gentle pipetting. These cells are then ... [摘要]  [摘要]神经元迁移是大脑中神经元回路发展的关键步骤。产后心室-脑室下区(V-SVZ)中产生的未成熟新神经元(神经母细胞)显示出巨大的潜力,可以在产后哺乳动物脑中高速长距离迁移,因此是分析分子和神经元的强大模型。神经元迁移的细胞机制。在这里,我们描述了一种使用共聚焦或超分辨率激光扫描显微镜对V-SVZ衍生的成神经细胞进行迁移的初级纤毛及其相关结构的体外延时成像方法。从出生后的第0-1天(P0-1)小鼠脑中解剖V-SVZ组织,并通过胰蛋白酶消化和温和的移液将其分离成单个细胞。然后用编码目的基因的质粒转导这些细胞,通过离心聚集,并在Matrigel中培养2天。通过共聚焦或超分辨率激光扫描显微镜获取培养的神经母细胞及其睫状结构(包括睫状膜和基体)迁移行为的时移图像。该方法提供了有关成神经细胞形态和睫状结构时空动态的信息,并且广泛适用于各种物种中各种类型的迁移神经元和非神经元细胞。


[背景]在出生后的大脑中,神经干细胞驻留在侧脑室侧壁内衬的心室-心室下区(V-SVZ)中,并不断生成未成熟的新神经元(神经母细胞)(Obernier和Alvarez-Buylla,2019)。这些成神经细胞形成链状细胞聚集体,并通过鼻尖迁移流(RMS)彼此迁移至嗅球(OB)(Luskin,1993; Lois and Alvarez-Buylla,1994; Lois et ...

A Procedure for Precise Determination of Glutathione Produced by Saccharomyces cerevisiae
Author:
Date:
2018-06-20
[Abstract]  In bioproduction, yields of products must be calculated precisely for accurate evaluation of various fermentation conditions. To evaluate productivity of microorganisms, product amounts per unit of medium volume (e.g., mg-product/L-broth), and/or product amounts per unit of a microorganism amount (e.g., mg-product/mg-dry cell weight) are often used. Nonetheless, detailed procedures for calculation of these production yields are often omitted in research articles, whereas methods for product quantification are described well. Here, we describe a detailed calculation procedure from our previous studies on glutathione production by Saccharomyces cerevisiae. This procedure can be applied to various other products and microorganisms, and therefore, may prove to be ... [摘要]  在生物生产中,必须精确计算产品的产量,以准确评估各种发酵条件。 为了评估微生物的生产力,每单位培养基体积的产物量(例如,mg-产物/ L-肉汤)和/或每单位微生物量的产物量(例如, ,毫克产品/毫克干细胞重量)经常使用。 尽管如此,在研究文章中常常忽略用于计算这些产量的详细程序,而产品量化的方法则被很好地描述。 在这里,我们描述了我们以前关于酿酒酵母产生谷胱甘肽的研究的详细计算过程。 该程序可以应用于各种其他产品和微生物,因此可能证明可用于各种其他生物生产研究。

【背景】谷胱甘肽是所有生物体中含量最高的含巯基三肽,并且作为在细胞中具有不同作用的生物活性物质起作用,例如作为氧化还原和解毒剂。因此,谷胱甘肽如今被广泛用于医疗,食品和化妆品行业,并且近年来需求增加。谷胱甘肽在工业上主要通过使用原始含有高浓度谷胱甘肽的酿酒酵母进行发酵生产,并且已经作为安全的食品生产微生物。对各种微生物中的微生物谷胱甘肽产生的研究在未来将变得更加重要。为了评估各种微生物发酵产生谷胱甘肽的效率,我们在这里描述了我们详细的样品制备程序,高效色谱(HPLC)定量还原和氧化谷胱甘肽的方法,以及两种产量的计算方法(Hara ) 2012; Hara等人,2015; Kiriyama等人,2013; Kobayashi等人 2017年)。

Comments