{{'Search' | translate}}
 

Vacuum Desiccator with Collar

Company: DWK Life Sciences
Catalog#: 31200-150
Bio-protocol()
Company-protocol()
Other protocol()

Assessing Long-distance Transport from Photosynthetic Source Leaves to Heterotrophic Sink Organs with [14C]CO2
Author:
Date:
2017-12-20
[Abstract]  Phloem loading and transport of photoassimilate from photoautotrophic source leaves to heterotrophic sink organs are essential physiological processes that help the disparate organs of a plant function as a single, unified organism. We present three protocols we routinely use in combination with each other to assess (1) the relative rates of sucrose (Suc) loading into the phloem vascular system of mature leaves (Yadav et al., 2017a), (2) the relative rates of carbon loading and transport through the phloem (Yadav et al., 2017b), and (3) the relative rates of carbon unloading into heterotrophic sink organs, specifically roots, after long-distance transport (this protocol). We propose that conducting all three protocols on experimental and control plants provides a ... [摘要]  来自光合自养源的光合同化物的韧皮部装载和运输到异养宿主器官是必不可少的生理过程,其帮助植物的不同器官作为单一的统一生物体起作用。我们提出了三种方案,我们经常使用它们相互结合来评估(1)蔗糖(Suc)加载到成熟叶片的韧皮部血管系统中的相对比率(Yadav等人,2017a), (2)通过韧皮部的碳载量和运输的相对速率(Yadav等人,2017b),和(3)碳长期释放到异养池器官特别是根中的相对速率距离传输(这个协议)。我们建议,在实验和对照植物上进行所有三种方案提供了全植物碳分配的可靠比较,并且将与单独进行的单一方案相关联的歧义降至最低(Dasgupta等人,2014; Khadilkar 。,2016)。在该方案中,在源叶片和韧皮部装载和运输14 C标签到异养宿主器官中,[14 C] CO 2 2被光致同化,尤其是根,通过闪烁计数进行量化。使用该协议,我们证明在拟南芥的伴侣细胞中蔗糖转运蛋白和液泡质子泵激焦磷酸酶的过表达增强了14 C标记光合同化物向宿主器官的转运(Dasgupta <等人,2014; Khadilkar等人,2016)。这种方法可以适用于量化其他植物物种的长途运输。

【背景】通过从自养源器官到异养池的韧皮部的长途运输是植物生长和产量的基础。根据其在植物中的作用和位置及其在该地区的主要功能,韧皮部网络通常分为收集韧皮部,运输韧皮部和释放韧皮部(Ayre,2011)。收集韧皮部是糖和其他化合物装入韧皮部以准备运输的地方。在已建立的植物中,收集韧皮部是发生韧皮部负载的成熟,光自养叶子的小脉。我们的第一个伴侣协议(Yadav ...

Quantifying the Capacity of Phloem Loading in Leaf Disks with [14C]Sucrose
Author:
Date:
2017-12-20
[Abstract]  Phloem loading and transport of photoassimilate from photoautotrophic source leaves to heterotrophic sink organs are essential physiological processes that help the disparate organs of a plant function as a single, unified organism. We present three protocols we routinely use in combination with each other to assess (1) the relative rates of sucrose (Suc) loading into the phloem vascular system of mature leaves (this protocol), (2) the relative rates of carbon loading and transport through the phloem (Yadav et al., 2017a), and (3) the relative rates of carbon unloading into heterotrophic sink organs, specifically roots, after long-distance transport (Yadav et al., 2017b). We propose that conducting all three protocols on experimental and control plants provides a ... [摘要]  来自光合自养源的光合同化物的韧皮部装载和运输到异养宿主器官是必不可少的生理过程,其帮助植物的不同器官作为单一的统一生物体起作用。我们提出了三种方案,我们经常使用相互组合,以评估(1)蔗糖(Suc)加载到成熟叶片的韧皮部血管系统(本协议)的相对比率,(2)碳负荷和运输通过韧皮部(Yadav et al。,2017a),和(3)在长距离运输后碳卸载到异养汇器官特别是根中的相对速率(Yadav等人, / em>。,2017b)。我们建议,在实验和对照植物上进行所有三种方案提供了全植物碳分配的可靠比较,并且将与单独进行的单个方案相关联的歧义降至最低(Dasgupta等人,2014; Khadilkar 。,2016)。在该方案中,从成熟莲座叶中分离的拟南芥叶片用含有[14 C] Suc的缓冲溶液浸润。 Suc转运蛋白(SUCs或SUTs)将Suc载入韧皮部,并将多余的,卸载在叶片中的Suc洗掉。通过冻干叶盘的放射自显影显示标记的Suc加载到静脉中,并通过闪烁计数进行定量。结果表示为每单位叶盘鲜重或面积的每分钟崩解。

【背景】光合同化物从源头到宿主器官的运输对于整个植物的正常生长和维持至关重要。叶片中的韧皮部负载是将在叶肉细胞中合成的光合同化物递送至韧皮部脉管系统的伴生细胞(CC)和筛分元素(SE)。三种不同的加载机制被认可。其中两个消耗能量在CC和SEs中累积高浓度的糖,并在源叶韧皮部产生高静水压力。第一种是外源韧皮部装载,其中将Suc(和/或一些物种中的糖醇)穿过质膜从细胞壁空间(即,质外体)装载进入CC中的CC质子动力的牺牲(Giaquinta,1983)。第二种是聚合物捕获,其中Suc通过特化的胞间连丝(Botmodesmata)扩散到韧皮部,并转化为太大而不能扩散回来的寡糖(Turgeon,1996)。第三种机制是被动加载,其中叶肉细胞中的溶质浓度最高,胞间连丝为被动移入CC和SE提供了一个开放的途径(Rennie和Turgeon,2009)。 ...

Comments