{{'Search' | translate}}
 

20 ml Syringes

Company: Terumo
Catalog#: SS-20ESZ
Bio-protocol()
Company-protocol()
Other protocol()

Live-cell Imaging by Super-resolution Confocal Live Imaging Microscopy (SCLIM): Simultaneous Three-color and Four-dimensional Live Cell Imaging with High Space and Time Resolution
Author:
Date:
2020-09-05
[Abstract]  Many questions in cell biology can be solved by state-of-the-art technology of live cell imaging. One good example is the mechanism of membrane traffic, in which small membrane carriers are rapidly moving around in the cytoplasm to deliver cargo proteins between organelles. For directly visualizing the events in membrane trafficking system, researchers have long awaited the technology that enables simultaneous multi-color and four-dimensional observation at high space and time resolution. Super-resolution microscopy methods, for example STED, PALM/STORM, and SIM, provide greater spatial resolution, however, these methods are not enough in temporal resolution. The super-resolution confocal live imaging microscopy (SCLIM) that we developed has now achieved the performance required. By using ... [摘要]  
[摘要 ] 活细胞成像的最新技术可以解决细胞生物学中的许多问题。一个很好的例子是膜流量的机制,我n的小的膜载流子迅速在细胞质中四处移动到细胞器之间递送货物蛋白。为了直接可视化膜运输系统中的事件,研究人员期待已久的技术可以在高空间和时间分辨率下同时进行多色和多维观察。超分辨率显微镜方法(例如STED,PALM / STORM和SIM)提供了更高的空间分辨率,但是,这些方法在时间分辨率上还不够。 我们开发的超高分辨率共聚焦实时成像显微镜(SCLIM)现在已达到所需的性能。通过使用SCLIM,我们对分泌货物以及标记有三种不同荧光蛋白的早期和晚期高尔基体驻留蛋白进行了高时空可视化。我们已经证明,分泌的货物确实是通过胸骨成熟而在高尔基体内递送的。此外,我们已经可视化了高尔基地区分泌性货物运输的详细信息,包括在成熟的水箱内形成区域,隔离了高尔基驻留的蛋白质,以及这些区域之间的货物运输。该协议可用于以高时空分辨率同时进行从酵母到高等植物和动物的活细胞中各种现象的三色和四维观察。

[背景 ] 的通过状态的最先进的光学显微镜活细胞成像发展极大地促进了残留在细胞生物学地址许多问题。例如,要可视化分泌途径中的事件,其中小的膜载体在细胞质中快速移动,则需要高速和三维(3D)图像采集。小号UPER分辨率共聚焦实时成像显微镜(SCLIM),我们开发(黑川等,2013) ...

Using Light and Electron Microscopy to Estimate Structural Variation in Thylakoid Membranes
Author:
Date:
2017-12-05
[Abstract]  The shapes of chloroplasts and the architectures of internal thylakoid membranes are altered by growth and environmental changes (Lichtenthaler et al., 1981; Kutik, 1985; Terashima and Hikosaka, 1995). These morphological alterations proceed via transitional intermediates, during which dynamic and heterogeneous thylakoid membranes are observed in cells (Nozue et al., 2017). Light microscopy is useful for the detection of morphological differences in chloroplasts. The thylakoid architecture of such morphologically variable chloroplasts is confirmed by transmission electron microscopy (TEM). The method of monitoring structural variation by light microscopy in combination with electron microscopy is described. [摘要]  叶绿体的形状和内部类囊体膜的结构被生长和环境变化所改变(Lichtenthaler等,1981; Kutik,1985; Terashima和Hikosaka,1995)。 这些形态改变经由过渡中间体进行,在此期间在细胞中观察到动态和非均匀的类囊体膜(Nozue等人,2017)。 光学显微镜可用于检测叶绿体中的形态差异。 透射电子显微镜(TEM)证实了这种形态变化的叶绿体的类囊体结构。 描述了用光学显微镜结合电子显微镜监测结构变化的方法。
【背景】已经提出了超结构形态学与类囊体膜中的光合作用和代谢途径的功能性偶联(Oswald等人,2001)。 这是由类囊体膜在叶成熟期间和从营养期向开花生长期转变期间的异质性支持的。 形态改变有一定的时间滞后(Nozue等人,2017)。 类囊体膜的重排与叶绿体形状的变化同时发生,叶绿体的形状从具有典型的细长透镜状外观变为通过光学显微镜可识别的肿胀外观。

Comments