{{'Search' | translate}}
 

Forceps Dumont 5

Company: Fine Science Tools
Catalog#: 11295-10
Bio-protocol()
Company-protocol()
Other protocol()

Molecular and Phenotypic Characterization Following RNAi Mediated Knockdown in Drosophila
Author:
Date:
2021-02-20
[Abstract]  

Loss of function studies shed significant light on the involvement of a gene or gene product in different cellular processes. Short hairpin RNA (shRNA) mediated RNA interference (RNAi) is a classical yet straightforward technique frequently used to knock down a gene for assessing its function. Similar perturbations in gene expression can be achieved by siRNA, microRNA, or CRISPR-Cas9 methods also. In Drosophila genetics, the UAS-GAL4 system is utilized to express RNAi and make ubiquitous and tissue-specific knockdowns possible. The UAS-GAL4 system borrows genetic components of S. cerevisiae, hence rule out the possibility of accidental expression of the system. In particular, this technique uses a target-specific shRNA, and the expression of the same is governed by the upstream activating

...
[摘要]  [摘要]功能丧失的研究为基因或基因产物在不同细胞过程中的参与提供了重要启示。短发夹RNA(shRNA)介导的RNA干扰(RNAi)是一种经典而直接的技术,经常用于敲低基因以评估其功能。也可以通过siRNA,microRNA或CRISPR-Cas9方法实现类似的基因表达扰动。在果蝇遗传学中,UAS-GAL4系统用于表达RNAi,并使遍在和组织特异性的基因敲除成为可能。UAS-GAL4系统借鉴了酿酒酵母的遗传成分,因此排除了系统意外表达的可能性。特别地,该技术使用靶标特异性shRNA,并且其表达受上游激活序列(UAS)支配。由特定启动子调节的GAL4受控表达可以普遍或以组织特异性方式驱动干扰RNA的表达。通过RNA分离和半定量RT-PCR反应,然后进行琼脂糖凝胶电泳来测量敲低效率。我们还采用了免疫染色程序来评估击倒效率。

RNAi为研究人员提供了降低基因产物水平(相当于亚同型条件)并研究结果的选择。基于UAS-GAL4的RNAi方法提供了基因表达的时空调节,还有助于推断早期发育阶段所需的基因功能。


[背景]果蝇果蝇(果蝇)是在研究实验室经常使用的一种通用模式生物。果蝇易于处理,繁殖和维护。而且,精心制作却寿命短,繁殖力高的果蝇具有更多的优势。果蝇遗传学工具的易用性有助于发展对基因功能的全面了解。由于果蝇基因中有60%与人类基因同源,并且具有前面提到的其他优点,因此果蝇是研究体内基因功能的显而易见的模型生物。 ...

In vitro Explant Cultures to Interrogate Signaling Pathways that Regulate Mouse Lung Development
Author:
Date:
2018-05-20
[Abstract]  Early mouse lung development, including specification of primordia, patterning of early endoderm and determination of regional progenitor cell fates, is tightly regulated. The ability to culture explanted embryonic lung tissue provides a tractable model to study cellular interactions and paracrine factors that regulate these processes. We provide up-to-date protocols for the establishment of this culture model and its application to investigate hedgehog signaling in the developing lung. [摘要]  早期鼠肺发育,包括原基的规范,早期内胚层的构图和区域祖细胞命运的确定,受到严格的调控。 培养移植胚胎肺组织的能力提供了一种易处理的模型来研究调节这些过程的细胞相互作用和旁分泌因子。 我们提供最新的协议,以建立这种文化模式及其应用来研究肺部发育中的刺猬信号。

【背景】小鼠肺发育起始于前肠前内胚层的内胚层憩室(E9.5),随后关闭近端气管食管中隔以形成不同的气管和食道管(Minoo和King,1994)。原始内胚层管的随后分支通过E12.5产生平面肺结构,随后正交分支产生成熟肺的三维结构特征(Metzger等人,2008)。在E12.5之前分离的肺遗传的平面结构适合于在空气液体界面进行体外培养(Carraro等人,2010; Del Moral和Warburton, 2010)。胚胎肺通过解剖使用立体显微镜在亮场照明下或通过与谱系追踪和荧光报道分子偶联时的荧光照明进行分离。在这里,我们描述了使用Shh Cre / Rosa mTmG报告小鼠,其允许Cre介导的从约E8.75起在前部前肠内胚层内的膜定位的GFP的激活(Montgomery <等人,2007;高斯等人,2009; Yao等人,2017)。因此,肺内胚层通过红色荧光由绿色荧光和周围组织显现,从而允许清晰识别和显微切割包括肺在内的发育内胚层结构,并在体外培养期间成像。

Dual-sided Voltage-sensitive Dye Imaging of Leech Ganglia
Author:
Date:
2018-03-05
[Abstract]  In this protocol, we introduce an effective method for voltage-sensitive dye (VSD) loading and imaging of leech ganglia as used in Tomina and Wagenaar (2017). Dissection and dye loading procedures are the most critical steps toward successful whole-ganglion VSD imaging. The former entails the removal of the sheath that covers neurons in the segmental ganglion of the leech, which is required for successful dye loading. The latter entails gently flowing a new generation VSD, VF2.1(OMe).H, onto both sides of the ganglion simultaneously using a pair of peristaltic pumps. We expect the described techniques to translate broadly to wide-field VSD imaging in other thin and relatively transparent nervous systems. [摘要]  在这个协议中,我们介绍了一种有效的方法,用于Tomina和Wagenaar(2017)中使用的电压敏感染料(VSD)加载和水蛭神经节成像。 解剖和染料加载程序是成功完成全神经节VSD成像的关键步骤。 前者需要去除覆盖水蛭节段神经节神经元的鞘,这是成功染料加载所需的。 后者需要使用一对蠕动泵同时轻柔地将新一代VSD VF2.1(OMe).H流入神经节的两侧。 我们期望所描述的技术广泛地转化为其他薄且相对透明的神经系统中的宽视场VSD成像。

【背景】双面显微镜是一种宽视野荧光成像系统,由一对精确对准的显微镜组成,用于观察来自对面的神经元制剂并且一次显示不同的焦平面(Tomina and Wagenaar,2017)。通过将该光学系统与新一代电压敏感染料(VSD),VoltageFluor(Miller等人,2012; Woodford等人,2015),荧光可以同时从不同深度的神经元捕获编码具有高保真度膜电压的信号。我们将这种泛神经元记录系统应用于药用水蛭的神经系统,我们利用电生理学方法诱发虚构行为并定量控制可识别神经元的膜电位(Tomina and ...

Comments