{{'Search' | translate}}
 

Perfect Loop for Ultra thin sections

Company: Electron Microscopy Sciences
Catalog#: 70944
Bio-protocol()
Company-protocol()
Other protocol()

Quantitative Electron Microscopic Assay Using Random Sampling from Single Sections to Test Plastic Synaptic Changes in Hippocampus
Author:
Date:
2018-08-05
[Abstract]  Studies over several decades on the organization of the CA1 hippocampus–a particularly favorable model for learning, memory and certain forms of cognition–have shown that the synaptic network in this brain region is plastic (Fortin et al., 2012). Recent evidence suggests that a number of environmental and endogenous stimuli may have a substantial effect on hippocampus-dependent cognitive function, implying enhanced synaptic plasticity in this brain region. Stimuli (e.g., food restriction, enriched environment, social interaction, gene-loss [knock-out animals], etc.) can trigger structural and functional plasticity (e.g., spine formation, increased expression of neurotrophic factors, synaptic function and neurogenesis) in the hippocampus (Stewart et al. ... [摘要]  几十年来对CA1海马组织的研究 - 一种特别有利于学习,记忆和某些形式认知的模型 - 已经证明这个大脑区域的突触网络是可塑的(Fortin 等。 ,2012)。最近的证据表明,许多环境和内源性刺激可能对海马依赖性认知功能产生实质性影响,这意味着这个大脑区域的突触可塑性增强。刺激(例如,食物限制,丰富的环境,社会互动,基因丢失[敲除动物],等)可以触发结构和功能的可塑性(例如,,脊柱形成,神经营养因子的表达增加,突触功能和神经发生)(Stewart et al。,1989; Andrade et al。, 2002; Babits et al。,2016)。使用定量电子显微镜,我们可以在短期或长期治疗和/或刺激期间研究啮齿动物中CA1海马的突触神经纤维。在该电子显微镜方法构建体的范围内,可以量化各种突触连接的密度,兴奋性脊柱突触的形态和内部结构(例如,突触后密度的平均长度和宽度)。使用高分辨率电子显微镜的这种定量超微结构测量可以用于观察啮齿动物脑组织中突触可塑性的结构表现。所提出的超微结构方案可以使研究人员能够揭示细节和突触变化,这些变化仅使用光学显微镜可能并不明显。超微结构数据可以为我们理解不同条件下海马突触结构的变化提供实质性进展。

【背景】我们使用单个切片的随机采样进行电子显微镜检查以优化样本大小(每个样本超过约100个图像)并检测对照和治疗动物的突触特征的变化。 ...

Transmission Electron Microscopy for Analysis of Mitochondria in Mouse Skeletal Muscle
Author:
Date:
2018-05-20
[Abstract]  Skeletal muscle is the most abundant tissue in the human body and regulates a variety of functions including locomotion and whole-body metabolism. Skeletal muscle has a plethora of mitochondria, the organelles that are essential for aerobic generation of ATP which provides the chemical energy to fuel vital functions such as contraction. The number of mitochondria in skeletal muscle and their function decline with normal aging and in various neuromuscular diseases and in catabolic conditions such as cancer, starvation, denervation, and immobilization. Moreover, compromised mitochondrial function is also associated with metabolic disorders including type 2 diabetes mellitus. It is now clear that maintaining mitochondrial content and function in skeletal muscle is vital for sustained health ... [摘要]  骨骼肌是人体中含量最丰富的组织,可调节各种功能,包括运动和全身代谢。骨骼肌有很多线粒体,这是ATP好氧生成所必需的细胞器,它提供化学能量来促进收缩等重要功能。骨骼肌中线粒体的数量及其功能随着正常衰老和各种神经肌肉疾病以及癌症,饥饿,去神经支配和固定等分解代谢条件而下降。此外,受损的线粒体功能也与包括2型糖尿病在内的代谢紊乱有关。现在清楚的是维持骨骼肌中的线粒体含量和功能对于整个寿命期间的持续健康是至关重要的。虽然有许多染色方法可用于研究线粒体,但透射电子显微镜(TEM)仍然是研究骨骼肌中线粒体结构和健康的最重要方法。它提供关于线粒体含量,嵴密度,组织,自噬体形成以及在各种疾病状况中经常观察到的任何其他异常的关键信息。在本文中,我们描述了一个详细的协议样本制备和透射电镜分析小鼠骨骼肌线粒体。

【背景】骨骼肌是一种高度塑性的组织,经过响应一些细胞外信号的形态和代谢适应性。包括抵抗或耐力运动在内的许多干扰刺激线粒体生物发生,导致增加的代谢能力和抵抗疲劳(Li等人,2008; Sandri,2008)。相反,在衰老期间,不活动,以及在许多分解代谢疾病状态下,骨骼肌线粒体数量和功能下降,导致易疲劳性和胰岛素抵抗增加(Sandri,2008)。功能失调的线粒体的累积也可能导致进行性活性氧物质诱导的损伤,从而进一步损害骨骼肌中的氧化能力(Bonnard等人,2008)。 ...

Comments