| Murine Monocyte and Macrophage Culture
|
|
Author:
Date:
2021-03-20
[Abstract] Myeloid progenitors in the bone marrow generate monocytes, macrophages, granulocytes and most dendritic cells. Even though these innate immune cells are part of the same lineage, each cell type plays a specific and critical role in tissue development, host defense and the generation of adaptive immunity. Protocols have been developed in the past to differentiate myeloid cell types from bone marrow cells, enabling functional investigation and furthering our understanding about their contribution to mammalian physiology. In this protocol, we describe a simple and rapid method to isolate monocytes from murine bone marrow, culture them for up to 5 days and lastly, differentiate them into bone marrow derived macrophages (Figure 1).
Graphic abstract: ...
[摘要] [摘要]骨髓中的骨髓祖细胞产生单核细胞,巨噬细胞,粒细胞和大多数树突状细胞。即使这些先天免疫细胞是同一谱系的一部分,每种细胞类型在组织发育,宿主防御和适应性免疫的产生中也发挥着特定而关键的作用。过去已经开发出区分骨髓细胞和骨髓细胞的协议,以进行功能研究并加深我们对它们对哺乳动物生理学贡献的理解。在该协议中,我们描述了一种简单快速的方法,可从鼠骨髓中分离单核细胞,将其培养长达5天,最后,将它们分化为源自骨髓的巨噬细胞(图1)。
图形摘要:
图1.实验概述,描绘了鼠单核细胞和巨噬细胞培养的步骤
|
|
|
| Evaluation of the Efficiency of Genome Editing Tools by a Frameshift Fluorescence Protein Reporter
|
|
Author:
Date:
2020-05-20
[Abstract] In the last decade, genome editing has been the center of attention as a novel tool for mechanistic investigations and for potential clinical applications. Various genome editing tools like meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN), and the clustered regularly interspaced short palindromic repeats (CRISPR)-associated genes (Cas), have been developed in recent years. For the optimal use as well as continued developments of these genome editing tools, the evaluation of their efficiencies and accuracies is vital. Here, we present a protocol for a reporter based on frameshift fluorescence protein which we recently developed to evaluate the efficiency and accuracy of genome editing tools. In this method, a ~20 bp target sequence ...
[摘要] [摘要] 在过去的十年中,基因组编辑作为一种机制研究和潜在临床应用的新工具已成为关注的焦点。近年来,已开发出各种基因组编辑工具,例如大范围核酸酶,锌指核酸酶(ZFN),转录激活子样基于效应子的核酸酶(TALEN)以及成簇的规则间隔的短回文重复序列(CRISPR)相关基因(Cas)。 。对于这些基因组编辑工具的最佳使用和持续发展,评估其效率和准确性至关重要。在这里,我们介绍了一种基于移码荧光蛋白的报告子方案,我们最近开发了该方案以评估效率和 基因组编辑工具的实用性。在这种方法中,在天蓝色荧光蛋白(CFP)的起始密码子后插入一个约20 bp的包含移码的靶序列,以使其荧光失活,并且只有新的插入/缺失事件会重新激活CFP 荧光。 。为了增加可追溯性,将内部核糖体进入位点和红色荧光蛋白mCherryFP 放置在报告子的下游。由in / del介导的荧光恢复产生的CFP阳性细胞的百分比可以通过荧光测量装置定量,作为基因组编辑频率的读数。作为演示,我们在这里介绍CRISPR-Cas9技术的使用以及流式细胞仪作为荧光变化的读数。
[背景] 基因组编辑工具对于生物学机制的研究以及遗传疾病的预防和/或治疗非常重要(Maeder和Gersbach,2016)。在最近的几十年中,引入了几种基因组编辑工具,包括大范围核酸酶(Epinat 等,2003),锌指核酸酶(ZFN)(Kim ...
|
|
|
| Flow Cytometry Analysis and Fluorescence-activated Cell Sorting of Myeloid Cells from Lung and Bronchoalveolar Lavage Samples from Mycobacterium tuberculosis-infected Mice
|
|
Author:
Date:
2020-05-20
[Abstract] Mycobacterium tuberculosis (Mtb) is transmitted by aerosol and can cause serious bacterial infection in the lung that can be fatal if left untreated. Mtb is now the leading cause of death worldwide by an infectious agent. Characterizing the early events of in vivo infection following aerosol challenge is critical for understanding how innate immune cells respond to infection but is technically challenging due to the small number of bacteria that initially infect the lung. Previous studies either evaluated Mtb-infected cells at later stages of infection when the number of bacteria in the lung is much higher or used in vitro model systems to assess the response of myeloid cells to Mtb. Here, we describe a method that uses fluorescent bacteria, a high-dose aerosol ...
[摘要] [摘要 ] 结核分枝杆菌(Mtb)通过气溶胶传播,可引起严重的肺部细菌感染,如果不及时治疗,可能致命。Mtb现在已成为全球传染病致死的主要原因。表征气溶胶激发后体内感染的早期事件对于了解先天免疫细胞如何对感染做出反应至关重要,但由于最初会感染肺的细菌数量少,因此在技术上具有挑战性。先前的研究或者在肺部细菌数量高得多时在感染后期评估Mtb感染的细胞,或者在体外使用 评估骨髓细胞对Mtb反应的模型系统。在这里,我们介绍一种使用荧光细菌,大剂量气溶胶感染模型和流式细胞术跟踪气溶胶感染和荧光激活细胞分选(FACS)之后立即分离肺中Mtb感染细胞的方法,以分离幼稚的旁观者,和Mtb感染的细胞用于下游应用,包括RNA测序。该协议提供了在肺环境中监视Mtb感染和细胞特异性反应的能力,已知该环境可调节常驻和募集人群的功能。使用此协议,我们发现肺泡巨噬细胞通过上调受转录因子Nrf2调节并有害于细菌早期控制的细胞保护性转录反应,在体内对Mtb感染作出反应。
[背景 ] 气溶胶传播是结核分枝杆菌(Mtb)感染自然周期的关键组成部分,有助于细菌的毒性并导致其在肺部的独特感染模式(North ,1995;Riley 等,1995)。 ; Pai et ...
|
|
|