{{'Search' | translate}}
 

Yeast Nitrogen Base Without Amino Acids and Ammonium Sulfate

Company: Sigma-Aldrich
Catalog#: Y1251
Bio-protocol()
Company-protocol()
Other protocol()

Characterising Maturation of GFP and mCherry of Genomically Integrated Fusions in Saccharomyces cerevisiae
Author:
Date:
2018-01-20
[Abstract]  Single-molecule fluorescence microscopy enables unrivaled sub-cellular quantitation of genomically encoded fusions of native proteins with fluorescent protein reporters. Fluorescent proteins must undergo in vivo maturation after expression before they become photoactive. Maturation effects must be quantified during single-molecule analysis. Here we present a method to characterise maturation of GFP and mCherry genetic protein fusions in budding yeast Saccharomyces cerevisiae. [摘要]  单分子荧光显微镜技术使天然蛋白与荧光蛋白报告基因的基因组编码融合成为无与伦比的亚细胞定量。 荧光蛋白质在表达后必须进行体内成熟,然后它们变成光敏的。 成熟效应必须在单分子分析过程中进行量化。 在这里,我们提出一种方法来表征GFP和mCherry遗传蛋白融合在芽殖酵母酿酒酵母中的成熟。

【背景】单分子荧光显微技术能够灵敏定量分子化学计量,流动性和拷贝数,不仅在逐个细胞的基础上,而且精确到个别的亚细胞区室(Leake,2012; Wollman和Leake,2015; Shashkova, >等。,2017)。该技术依赖于感兴趣的野生型蛋白质的内源表达的荧光蛋白融合,从而存在一对一的标记。然而,所有荧光蛋白在进入明亮的荧光状态之前的体内成熟时间从几分钟到几十分钟不等(Badrinarayanan等人,2012)。因此,测量任何成熟效应和量化是否存在标记蛋白质的不成熟“暗部分”是最重要的。这些测量也与光漂白(FRAP)后的荧光恢复特别相关。 FRAP可用于研究活细胞中的分子转换(Beattie等人,2017)。 FRAP基于荧光标记组分定位的细胞区域的光漂白,随后定量该区域随时间的任何荧光恢复。可以使用在初始光漂白剂之后作为时间函数的荧光强度之间的测量关系来确定分子迁移率和动力学参数,例如特定荧光组分从分子复合物解离的速率(Leake等人, ...

Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences
Author:
Date:
2017-09-20
[Abstract]  Genome manipulation has become more accessible given the advent of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) editing technology. The Cas9 endonuclease binds a single stranded (single guide) RNA (sgRNA) fragment that recruits the complex to a corresponding genomic target sequence where it induces a double stranded break. Eukaryotic repair systems allow for the introduction of exogenous DNA, repair of existing mutations, or deletion of endogenous gene products. Targeting of Cas9 to multiple genomic positions (termed ‘multiplexing’) is achieved by the expression of multiple sgRNAs within the same nucleus. However, an ongoing concern of the CRISPR field has been the accidental targeting of Cas9 to alternative (‘off-target’) DNA locations within a genome. We ... [摘要]  鉴于CRISPR(集群定期间隔短回归重复)编辑技术的出现,基因组操纵变得更加易于使用。 Cas9核酸内切酶将募集复合物的单链(单向导)RNA(sgRNA)片段结合到相应的基因组靶序列,引发双链断裂。真核修复系统允许引入外源DNA,修复现有突变或内源基因产物的缺失。通过在同一核内表达多个sgRNA来实现Cas9对多个基因组位置的定位(称为“多重”)。然而,CRISPR领域的持续关注是将Cas9意外地定位到基因组内的替代(“脱靶”)DNA位置。我们将安装的人造Cas9靶序列的使用(称为人造基因座上的Cas9复制)描述为允许(i)与单个sgRNA复用的酵母基因组中的用途; (ii)减少/消除可能的脱靶效应,以及(iii)精确控制预定目标序列的放置。
【背景】CRISPR(集群定期间隔回归重复)机制已经在原核生物中演变为具有很高精度编辑任何基因组的能力的原始适应性免疫系统(Jinek等,2012; Sorek等,2013)。这种生物技术需要使用来自化脓性链球菌(或othologous物种)的内切核酸酶(Cas9),单个RNA'引导'序列和外源供体DNA(如果需要)。仅在短短几年内,CRISPR / ...

Comments