{{'Search' | translate}}
 

Dissecting microscope

Company: ZEISS
Catalog#: Stemi 2000-C
Bio-protocol()
Company-protocol()
Other protocol()

Muscle Function Assessment Using a Drosophila Larvae Crawling Assay
Author:
Date:
2018-07-20
[Abstract]  Here we describe a simple method to measure larval muscle contraction and locomotion behavior. The method enables the user to acquire data, without the necessity of using expensive equipment (Rotstein et al., 2018). To measure contraction and locomotion behaviour, single larvae are positioned at the center of a humidified Petri dish. Larval movement is recorded over time using the movie function of a consumer digital camera. Subsequently, videos are analyzed using ImageJ (Rueden et al., 2017) for distance measurements and counting of contractions. Data are represented as box or scatter plots using GraphPad Prism (©GraphPad Software). [摘要]  在这里,我们描述了一种测量幼虫肌肉收缩和运动行为的简单方法。 该方法使用户能够获取数据,而无需使用昂贵的设备(Rotstein et al。,2018)。 为了测量收缩和运动行为,将单个幼虫定位在加湿的培养皿的中心。 使用消费者数码相机的电影功能随时间记录幼虫移动。 随后,使用ImageJ(Rueden et al。,2017)分析视频,以进行距离测量和收缩计数。 使用GraphPad Prism(© GraphPad软件)将数据表示为方框或散点图。

【背景】众所周知,尽管存在其他因素,周围细胞外基质(ECM)的组成与适当的器官功能性密切相关。其成分的变化最终可能导致器官功能失常或失败。利用三龄幼虫的肌肉作为模型,我们可以评估单个ECM蛋白浓度对网格柔韧性或强度的影响,以及幼虫运动行为作为读数。一般来说,这也适用于第一龄或第二龄幼虫,但我们决定使用漂浮的三龄幼虫,因为它们的体型较大。对于 Drosophila 幼虫的精确老化,我们参考Demerec(1950)给出的描述。

近年来出现了多种测量黑腹果蝇幼虫爬行的方法。诸如FIM2c(Risse et ...

Xenopus laevis Oocytes Preparation for in-Cell EPR Spectroscopy
Author:
Date:
2018-04-05
[Abstract]  One of the most exciting perspectives for studying bio-macromolecules comes from the emerging field of in-cell spectroscopy, which enables to determine the structure and dynamics of bio-macromolecules in the cell. In-cell electron paramagnetic resonance (EPR) spectroscopy in combination with micro-injection of bio-macromolecules into Xenopus laevis oocytes is ideally suited for this purpose. Xenopus laevis oocytes are a commonly used eukaryotic cell model in different fields of biology, such as cell- and development-biology. For in-cell EPR, the bio-macromolecules of interest are microinjected into the Xenopus laevis oocytes upon site-directed spin labeling. The sample solution is filled into a thin glass capillary by means of Nanoliter Injector and after that ... [摘要]  研究生物大分子的最令人兴奋的观点之一来自于新兴的细胞内光谱学领域,它能够确定细胞中生物大分子的结构和动力学。细胞内电子顺磁共振(EPR)光谱结合将生物大分子微注射到非洲爪蟾卵母细胞中非常适合于此目的。非洲爪蟾卵母细胞是生物学不同领域常用的真核细胞模型,如细胞和发育生物学。对于细胞内EPR,感兴趣的生物大分子通过定点自旋标记显微注射到非洲爪蟾卵母细胞中。通过Nanoliter注射器将样品溶液填充到薄玻璃毛细管中,然后通过小心地穿刺薄膜将其微注射入非洲爪蟾卵母细胞的黑色动物部分。之后,取决于最终的细胞内EPR实验的种类,将三个或五个显微注射的非洲爪蟾卵母细胞装载到Q波段EPR样品管中,随后进行任选的休克冷冻(用于实验冷冻溶液)并且在期望的温育时间之后测量(在低温或生理温度下)。由于显微注射样品的细胞毒性作用和顺磁性自旋标记在还原性细胞环境中的稳定性,孵育时间受到限制。通过监测细胞形态和减少动力学来量化这两个方面。

【背景】电子顺磁共振(EPR)光谱学是用于表征顺磁系统的选择方法(Atherton,1993; Gerson等人,1994; Jeschke和Schweiger,2001)。反磁性生物大分子可以通过定点自旋标记(SDSL)进行EPR光谱学分析,通常使用氮氧化物作为自旋标记(Hubbell和Altenbach,1994; Feix和Klug,2002; ...

Sebinger Culture: A System Optimized for Morphological Maturation and Imaging of Cultured Mouse Metanephric Primordia
Author:
Date:
2018-02-20
[Abstract]  Here, we present a detailed protocol on setting up embryonic renal organ cultures using a culture method that we have optimised for anatomical maturation and imaging. Our culture method places kidney rudiments on glass in a thin film of medium, which results in very flat cultures with all tubules in the same image plane. For reasons not yet understood, this technique results in improved renal maturation compared to traditional techniques. Typically, this protocol will result in an organ formed with distinct cortical and medullary regions as well as elongated, correctly positioned loops of Henle. This article describes our method and provides detailed advice. We have published qualitative and quantitative evaluations on the performance of the technique in Sebinger et al. (2010) ... [摘要]  在这里,我们提出了一个详细的协议,建立胚胎肾脏器官培养使用培养方法,我们已经优化解剖成熟和成像。 我们的培养方法是将肾脏的基质放在玻璃上,形成一层薄薄的培养基,培养的平面非常平坦,所有的肾小管都在同一图像平面上。 由于尚未理解的原因,与传统技术相比,该技术导致肾成熟的改善。 通常情况下,这个协议将导致器官形成不同的皮层和髓质区域,以及拉长,正确定位的亨利循环。 本文介绍了我们的方法并提供了详细的建议。 我们已经在Sebinger等人(2010)和Chang和Davies(2012)上发表了关于该技术性能的定性和定量评估。

【背景】哺乳动物的后肾(永久性)肾发育于位于中胚层尾端的简单遗传。在小鼠胚胎日('E')10,这些基因形成并由两种形态上可区分的组分组成;产生为Wolffian(肾)导管的憩室的上皮性输尿管芽,以及形成在导管旁的后肾间质(metanephrogenic mesenchyme)。随着发育进展,输尿管芽进入后肾间质,经历多轮生长和分枝,形成“树”。这后来重塑以产生一个成熟的集合管系统,其中肾小管从中心腔,肾盂放射(Lindstrom等人,2015)。肾盂排水到输尿管,从输尿管芽的原始茎形成。随着输尿管芽发育,它诱导来自后肾间充质细胞的细胞在其每个尖端周围凝结形成“帽间充质”(Schreiner,1902; ...

Comments