{{'Search' | translate}}
 

-80 °C Freezer

Company: Thermo Fisher Scientific
Catalog#: FormaTM 900 Series
Bio-protocol()
Company-protocol()
Other protocol()

Isolation of Commensal Escherichia coli Strains from Feces of Healthy Laboratory Mice or Rats
Author:
Date:
2018-03-20
[Abstract]  The colonization abundance of commensal E. coli in the gastrointestinal tract of healthy laboratory mice and rats ranges from 104 to 106 CFU/g feces. Although very well characterized, the family that E. coli belongs to has a very homogeneous 16S rRNA gene sequence, making the identification from 16S rRNA sequencing difficult. This protocol provides a procedure of isolating and identifying commensal E. coli strains from a healthy laboratory mouse or rat feces. The method can be applied to isolate commensal E. coli from other laboratory rodent strains. [摘要]  共生E的殖民丰度。 大肠杆菌在健康实验小鼠和大鼠的胃肠道中的范围为10 4至10 6 CFU / g粪便。 虽然描述得非常好,但那个家族就是这样的。 大肠杆菌属于具有非常均一的16S rRNA基因序列,使得从16S rRNA测序鉴定困难。 该协议提供了分离和识别共生E的程序。 来自健康实验室小鼠或大鼠粪便的大肠杆菌菌株。 该方法可以应用于隔离共生电子。 来自其他实验室啮齿类动物的大肠杆菌。

【背景】大肠杆菌是革兰氏阴性兼性厌氧菌,其仅构成脊椎动物肠道微生物群的一小部分,但在微生物相互作用,免疫调节和代谢功能中起关键作用(Tenaillon等人。,2010)。作为最好的模式微生物之一,共生E。已经越来越多地研究大肠杆菌菌株以揭示肠道共生微生物适应独特生态位并影响宿主生理机制。然而,不同菌株之间的高度同源性在共生E的鉴定和表征上提出了困难。基于16S rRNA测序方法的大肠杆菌。由于新一代测序技术的发展和全基因组的大规模分析,我们能够识别共生E。根据基因组中毒力基因的存在,分离自不同宿主的胃肠道的大肠杆菌菌株。在这个协议中,我们展示了一种分离和识别共生E的方法。使用选择性培养基和全基因组测序从实验室小鼠或大鼠获得大肠杆菌菌株。但是,应该指出的是,共生E的存在。大肠杆菌在实验室动物中取决于设施的供应商和环境条件。

Loading of Extracellular Vesicles with Chemically Stabilized Hydrophobic siRNAs for the Treatment of Disease in the Central Nervous System
Author:
Date:
2017-06-20
[Abstract]  Efficient delivery of oligonucleotide therapeutics, i.e., siRNAs, to the central nervous system represents a significant barrier to their clinical advancement for the treatment of neurological disorders. Small, endogenous extracellular vesicles were shown to be able to transport lipids, proteins and RNA between cells, including neurons. This natural trafficking ability gives extracellular vesicles the potential to be used as delivery vehicles for oligonucleotides, i.e., siRNAs. However, robust and scalable methods for loading of extracellular vesicles with oligonucleotide cargo are lacking. We describe a detailed protocol for the loading of hydrophobically modified siRNAs into extracellular vesicles upon simple co-incubation. We detail methods of the workflow from ... [摘要]  将寡核苷酸治疗剂即siRNAs有效递送到中枢神经系统代表了治疗神经系统疾病的临床进展的显着障碍。 小的内源性细胞外囊泡显示能够在细胞(包括神经元)之间传输脂质,蛋白质和RNA。 这种天然的贩运能力使细胞外囊泡成为寡核苷酸即siRNA的递送载体的潜力。 然而,缺乏用寡核苷酸载体装载细胞外囊泡的稳健和可扩展的方法。 我们描述了在简单共孵育后将疏水修饰的siRNA加载到细胞外囊泡中的详细方案。 我们详细介绍了从细胞外囊泡纯化到数据分析的工作流程。 该方法可以促进基于细胞外基于囊泡的疗法用于治疗广泛的神经障碍。
【背景】siRNA是一种类型的寡核苷酸治疗剂,一类新的直接靶向信使RNA(mRNA)的药物,以防止导致疾病表型的蛋白质的表达。 siRNA的治疗应用是非常有希望的,因为siRNA可以被设计为靶向任何基因,包括不能用小分子或基于蛋白质的疗法“可药用”的基因。在寡核苷酸治疗剂的化学中取得的进展使得能够设计完全稳定的疏水改性的siRNA(hsiRNA,用2'-O-甲基或2'-氟以及硫代磷酸酯和共价键合到胆固醇的有义链修饰),其促进细胞hsiRNA的自我内化,并保持有效负载在RNA诱导的沉默复合体(RISC)中的能力(Byrne等,2013; Khvorova和Watts,2017)。与乘客链的3'末端连接的胆固醇缀合物对于快速细胞膜缔合是必需的(Byrne等,2013; ...

Comments