{{'Search' | translate}}
 

BarnsteadTM GenPureTM Pro Water Purification System

Company: Thermo Fisher Scientific
Catalog#: BarnsteadTM GenPureTM Pro
Bio-protocol()
Company-protocol()
Other protocol()

CRISPR/Cas9-mediated ssDNA Recombineering in Corynebacterium glutamicum
Author:
Date:
2018-10-05
[Abstract]  Corynebacterium glutamicum is a versatile workhorse for industrial bioproduction of many kinds of chemicals and fuels, notably amino acids. Development of advanced genetic engineering tools is urgently demanded for systems metabolic engineering of C. glutamicum. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR) and their CRISPR-associated proteins (Cas) are now revolutionizing genome editing. The CRISPR/Cas9 system from Streptococcus pyogenes that utilizes NGG as protospacer adjacent motif (PAM) and has good targeting specificity can be developed into a powerful tool for efficient and precise genome editing of C. glutamicum. In this protocol, we described the general procedure for CRISPR/Cas9-mediated ssDNA ... [摘要]  谷氨酸棒杆菌是多种化学品和燃料,特别是氨基酸的工业生物生产的多功能工具。 迫切需要开发先进的基因工程工具用于 C的系统代谢工程。谷氨酸。 最近推出的聚集的有规律的间隔短回文重复序列(CRISPR)和它们的CRISPR相关蛋白(Cas)现在正在彻底改变基因组编辑。 来自 Streptococcus pyogenes 的CRISPR / Cas9系统利用NGG作为原型间隔区相邻基序(PAM)并具有良好的靶向特异性,可以开发成为 C的高效和精确基因组编辑的有力工具。谷氨酸。 在该方案中,我们描述了 C中CRISPR / Cas9介导的ssDNA重组工程的一般程序。谷氨酸。 可以在 C中引入小的修改。 谷氨酸染色体,编辑效率高达90%。
【背景】革兰氏阳性土壤细菌 Corynebacterium glutamicum 是用于氨基酸,生物燃料和聚合物构建模块的工业生物生产的多功能工具(Becker et al。,2016)。在 C工程的早期阶段。谷氨酸,随机诱变结合对氨基酸类似物的表型抗性的阳性选择是最常用的策略(Vertes et al。,2005)。 C中的遗传操作。谷氨酸(glutamicum)于1984年启动,并成为菌株改良的关键促成策略(Ozaki et al。,1984)。常规使用的基因破坏和插入 ...

CRISPR/Cas9 Editing of the Bacillus subtilis Genome
Author:
Date:
2017-04-20
[Abstract]  A fundamental procedure for most modern biologists is the genetic manipulation of the organism under study. Although many different methods for editing bacterial genomes have been used in laboratories for decades, the adaptation of CRISPR/Cas9 technology to bacterial genetics has allowed researchers to manipulate bacterial genomes with unparalleled facility. CRISPR/Cas9 has allowed for genome edits to be more precise, while also increasing the efficiency of transferring mutations into a variety of genetic backgrounds. As a result, the advantages are realized in tractable organisms and organisms that have been refractory to genetic manipulation. Here, we describe our method for editing the genome of the bacterium Bacillus subtilis. Our method is highly efficient, resulting in ... [摘要]  大多数现代生物学家的基本过程是研究生物体的遗传操作。尽管许多不同的方法用于编辑细菌基因组已经在实验室中使用了数十年,但CRISPR / Cas9技术对细菌遗传学的适应使得研究人员能够以无与伦比的设施来操纵细菌基因组。 CRISPR / Cas9允许基因组编辑更精确,同时也提高将突变转移到各种遗传背景的效率。因此,在遗传操作难以处理的易处理生物和生物体中实现了这些优点。在这里,我们描述了我们编辑枯草芽孢杆菌细菌基因组的方法。我们的方法是高效的,导致精确,无标记的突变。此外,在产生编辑质粒之后,可以将突变快速导入几个遗传背景,大大增加可进行遗传分析的速度。

枯草芽孢杆菌是高度易处理的革兰氏阳性菌。遗传研究适用于使用多种载体通过同源重组快速有效地引入突变。尽管有许多不同的方法来引入B突变。 subtilis,每种方法都有其局限性。一种简单而简单的方法,用于在B中进行突变。枯草芽孢杆菌是基因破坏,其中将质粒整合到感兴趣的基因内(Vagner等人,1998)。主要的局限性包括:1)扰乱操纵子的极地作用的潜力; 2)引进和保留外来DNA; 3)一旦使用抗生素耐药性盒,如果在其他突变的背景下研究给定的突变,则研究者必须使用不同的盒;和4)该方法限于靶向整个基因,并且不能产生更精确的点突变。 ...

Comments