{{'Search' | translate}}
 

POTASSIUM FERRICYANIDE

Company: AMRESCO
Catalog#: 0713
Bio-protocol()
Company-protocol()
Other protocol()

GUS Staining of Guard Cells to Identify Localised Guard Cell Gene Expression
Author:
Date:
2017-07-20
[Abstract]  Determination of a gene expression in guard cells is essential for studying stomatal movements. GUS staining is one means of detecting the localization of a gene expression in guard cells. If a gene is specially expressed in guard cells, the whole cotyledons or rosette leaf can be used for GUS staining. However, if a gene is expressed in both mesophyll and guard cells, it is hard to exhibit a clear expression of the gene in guard cells by a GUS staining image from leaf. To gain a clear guard cell GUS image of small G protein ROP7, a gene expressed in both mesophyll and guard cells, we peeled the epidermal strips from the leaf of 3-4 week-old plants. After removing the mesophyll cells, the epidermal strips were used for GUS staining. We compared the GUS staining images from ... [摘要]  保卫细胞中基因表达的测定对于研究气孔运动至关重要。 GUS染色是检测保卫细胞中基因表达定位的一种手段。如果在保卫细胞中特异性表达基因,则可以将整个子叶或玫瑰花叶用于GUS染色。然而,如果在叶肉和保卫细胞中表达基因,则难以通过来自叶的GUS染色图像在保护细胞中表达该基因的清楚表达。为了获得清晰的保护细胞GUS图像的小G蛋白ROP7 ,一种在叶肉和保卫细胞中表达的基因,我们从3-4周龄的植物的叶片剥离表皮条。去除叶肉细胞后,将表皮条用于GUS染色。我们比较了来自表皮条或小G蛋白ROP7和/或RopGEF4的叶片的GUS染色图像,其是在保卫细胞中特异性表达的基因,并且发现提供了表皮条带的GUS染色显示在叶肉和保卫细胞中表达的基因的保卫细胞表达的良好方法。该方案适用于在拟南芥保卫细胞中表达的任何基因,或表皮条可以容易地从叶上剥离的其它植物。
【背景】气孔运动调节植物和环境之间的气体交换,因此,重要的是揭示气孔的开启或关闭的机制。确定基因的保卫细胞表达对于研究其在气孔运动中的作用至关重要。鉴定基因在保卫细胞中的表达有几种方法。一种方法是通过RT-PCR(Jeon等人,2008; Takimiya等人,2013)检查保卫细胞中基因的RNA表达。为此,需要分离叶肉和保卫细胞的原生质体。另一种方法是检查表达由基因天然启动子驱动的GUS的转基因植物的保卫细胞中的GUS ...

Use of Geminivirus for Delivery of CRISPR/Cas9 Components to Tobacco by Agro-infiltration
Author:
Date:
2017-04-05
[Abstract]  CRISPR/Cas9 system is a recently developed genome editing tool, and its power has been demonstrated in many organisms, including some plant species (Wang et al., 2016). In eukaryotes, the Cas9/gRNA complexes target genome sites specifically and cleave them to produce double-strand breaks (DSBs), which can be repaired by non-homologous end joining (NHEJ) pathway (Wang et al., 2016). Since NHEJ is error prone, mutations are thus generated. In plants, delivery of genome editing reagents is still challenging. In this protocol, we detail the procedure of a virus-based gRNA delivery system for CRISPR/Cas9 mediated plant genome editing (VIGE). This method offers a rapid and efficient way to deliver gRNA into plant cells, especially for those that are recalcitrant to ... [摘要]  CRISPR / Cas9系统是最近开发的基因组编辑工具,其功能已被证实在许多生物体中,包括一些植物物种(Wang等人,2016)。 在真核生物中,Cas9 / gRNA复合物特异性地靶向基因组位点并切割它们以产生双链断裂(DSB),其可以通过非同源末端连接(NHEJ)途径修复(Wang等人, 。,2016)。 由于NHEJ易出错,因此产生突变。 在植物中,基因组编辑试剂的递送仍然是挑战性的。 在本协议中,我们详细介绍了CRISPR / Cas9介导的植物基因组编辑(VIGE)的基于病毒的gRNA传递系统的过程。 该方法提供了将gRNA递送到植物细胞中的快速且有效的方式,特别是对于那些难以转基因农杆菌的方法。

已经报道了基于病毒的基因组编辑技术使用解构DNA病毒和RNA病毒(Baltes等人,2014; Ali等人,2015)。 最近,我们使用了一种完整的双因素病毒 - 卷心菜叶卷曲病毒(CaLCuV)(一种感染广西芥菜科的成员,包括花椰菜的二分酵母病毒),用于高效率 第一次(Yin等人,2015年),其主机之一的基因组编辑(Nicotiana benhamiana)首次进行基因组编辑。

Comments