{{'Search' | translate}}
 

LB Broth (Luria/Miller)

Company: Carl Roth
Catalog#: X968
Bio-protocol()
Company-protocol()
Other protocol()

Implementation of Blue Light Switchable Bacterial Adhesion for Design of Biofilms
Author:
Date:
2018-06-20
[Abstract]  Control of bacterial adhesions to a substrate with high precision in space and time is important to form a well-defined biofilm. Here, we present a method to engineer bacteria such that they adhere specifically to substrates under blue light through the photoswitchable proteins nMag and pMag. This provides exquisite spatiotemporal remote control over these interactions. The engineered bacteria express pMag protein on the surface so that they can adhere to substrates with nMag protein immobilization under blue light, and reversibly detach in the dark. This process can be repeatedly turned on and off. In addition, the bacterial adhesion property can be adjusted by expressing different pMag proteins on the bacterial surface and altering light intensity. This protocol provides light ... [摘要]  在空间和时间上高精度地控制细菌粘附到基底对于形成明确的生物膜是重要的。 在这里,我们提出了一种方法来设计细菌,使其在蓝光下通过光可切换蛋白质nMag和pMag特异性地粘附在基底上。 这为这些交互提供了精妙的时空遥控。 工程菌在表面上表达pMag蛋白,以便它们可以在蓝光下与nMag蛋白固定化的基质粘附,并在黑暗中可逆地分离。 该过程可以重复开启和关闭。 此外,通过在细菌表面表达不同的pMag蛋白质并改变光强度可以调节细菌粘附性质。 该协议提供了可高度空间和时间分辨率的细菌粘附的光可切换,可逆和可调控制,这使我们能够以极大的灵活性在基底上图案化细菌。

【背景】控制生物膜形成对于了解细菌在自然发生的生物膜中的社会相互作用至关重要(Flemming et。,2016)。这对生物膜在生物催化,生物传感和废物处理中的生物技术应用也特别重要(Zhou等人,2013; Jensen等人,2016)。生物膜的形成始终始于细菌与底物的粘附,这决定了生物膜中的空间组织(Liu等人,2016; Nadell等人,2016)。已经提出了许多策略来控制细菌粘附,例如通过脂质体融合利用生物正交反应基团修饰细菌表面(Elahipanah等,2016),将粘附分子固定在基质上(Sankaran等,等),2015; Zhang等人,2016; ...

Extraction and Analysis of Carotenoids from Escherichia coli in Color Complementation Assays
Author:
Date:
2017-03-20
[Abstract]  A common method to investigate the function of genes putatively involved in carotenoid biosynthesis is the so called color complementation assay in Escherichia coli (see, e.g., Cunningham and Gantt, 2007). In this assay, the gene under investigation is expressed in E. coli strains genetically engineered to synthesize potential carotenoid substrates, followed by analysis of the pigment changes in the carotenogenic bacteria via high-performance liquid chromatography (HPLC). Two crucial steps in this method are (i) the quantitative extraction of the carotenoids out of E. coli and (ii) the reproducible and complete separation of the pigments by HPLC.

Here, we present a protocol for the extraction and analysis of carotenoids with a broad range of ...
[摘要]  调查涉及类胡萝卜素生物合成的基因的功能的常见方法是在大肠杆菌中所谓的颜色互补测定(参见,例如,Cunningham和Gantt,2007) 。在该测定中,所研究的基因在E中表达。基因工程改造以合成潜在的类胡萝卜素底物,然后通过高效液相色谱(HPLC)分析色素变性细菌。该方法的两个关键步骤是(i)从E中定量提取类胡萝卜素。大肠杆菌和(ii)通过HPLC重现和完全分离颜料。
 在这里,我们提出了一种从胡萝卜素E提取和分析具有广泛极性的类胡萝卜素的方案。大肠杆菌。用于提取的溶剂混合物在溶液中保持亲脂性胡萝卜素和更极性的叶黄素,并且与随后的HPLC分析的洗脱液梯度相容。所用的C30柱特别适于分离类胡萝卜素的各种顺式异构体,而且用于分离立体异构体如α-和β-胡萝卜素或叶黄素和玉米黄质。

Comments