{{'Search' | translate}}
 

Sodium citrate

Company: Sigma-Aldrich
Catalog#: C8532
Bio-protocol()
Company-protocol()
Other protocol()

Isolation of Intact Vacuoles from Petunia Petals and Extraction of Sequestered Glycosylated Phenylpropanoid Compounds
Author:
Date:
2018-07-05
[Abstract]  Plant vacuoles are the largest compartment in plant cells, occupying more than 80% of the cell volume. A variety of proteins, sugars, pigments and other metabolites are stored in these organelles (Paris et al., 1996; Olbrich et al., 2007). Flowers produce a variety of specialized metabolites, some of which are unique to this organ, such as components of pollination syndromes, i.e., scent volatiles and flavonoids (Hoballah et al., 2007; Cna'ani et al., 2015). To study the compounds stored in floral vacuoles, this compartment must be separated from the rest of the cell. To enable isolation of vacuoles, protoplasts were first generated by incubating pierced corollas with cellulase and macrozyme enzymes. After filtering and several centrifugation ... [摘要]  植物液泡是植物细胞中最大的隔室,占细胞体积的80%以上。各种蛋白质,糖,色素和其他代谢物存储在这些细胞器中(Paris et al。,1996; Olbrich et al。,2007)。花产生多种特殊代谢物,其中一些是该器官特有的,如授粉综合征的成分, ie ,气味挥发物和黄酮类化合物(Hoballah et al。, 2007; Cna'ani et al。,2015)。为了研究存储在花液泡中的化合物,必须将该隔室与细胞的其余部分分开。为了能够分离液泡,首先通过将刺穿的花冠与纤维素酶和macrozyme酶一起孵育来产生原生质体。在过滤和几个离心步骤后,通过显微镜观察显示原生质体与碎片和受损/破裂的原生质体分离。裂解浓缩的原生质体,并通过Ficoll梯度离心提取液泡。 Vacuoles用于隔离代谢物的定量GC-MS分析。这种方法使我们能够将空泡识别为糖基化挥发性苯丙酸类的亚细胞聚集位点,并假设共轭气味化合物在通向顶空的途径中被隔离(Cna'ani et al。,2017) 。

【背景】植物空泡占植物细胞中细胞体积的80%。这些细胞器对植物生长和发育至关重要,在整个植物的生命中具有不同的功能。 ...

Robust Generation of Knock-in Cell Lines Using CRISPR-Cas9 and rAAV-assisted Repair Template Delivery
Author:
Date:
2017-04-05
[Abstract]  The programmable Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease 9 (Cas9) technology revolutionized genome editing by providing an efficient way to cut the genome at a desired location (Ledford, 2015). In mammalian cells, DNA lesions trigger the error-prone non-homologous end joining (NHEJ) DNA repair mechanism. However, in presence of a DNA repair template, Homology-Directed Repair (HDR) can occur leading to precise repair of the lesion site. This last process can be exploited to enable precise knock-in changes by introducing the desired genomic alteration on the repair template. In this protocol we describe the delivery of long repair templates (> 200 nucleotides) using recombinant Adeno Associated Virus (rAAV) for CRISPR-Cas9-based knock-in of a ... [摘要]  可编程集群定期间隔短回归度(CRISPR)相关核酸酶9(Cas9)技术通过提供在所需位置切割基因组的有效方式,彻底改变了基因组编辑(Ledford,2015)。 在哺乳动物细胞中,DNA损伤触发易发生非同源末端连接(NHEJ)DNA修复机制。 然而,在DNA修复模板的存在下,可以发生同源性定向修复(HDR),导致病变部位的精确修复。 可以利用最后的方法,通过在修复模板上引入所需的基因组改变来实现精确的敲入变化。 在本协议中,我们描述了使用重组腺相关病毒(rAAV)在人细胞系中进行基于CRISPR-Cas9的C-末端标签序列敲入的长修复模板(> 200个核苷酸)的递送。

尽管有关CRISPR-Cas9产生的敲门模型系统的大量报告,敲门砖报告仍然落后。由于许多应用,产生敲入细胞系仍然是基因组编辑的明显目标。敲入改变的引入通常依赖于修复模板DNA的存在,并且在位点特异性双链(ds)DNA断裂被引入接近改变位点的基因组中后,HDR修复机制的激活。不同的模板可以传送到修复机器,范围从含有广泛同源区域和可选选择盒的经典线性化载体到约200个核苷酸的单链(ss)DNA寡核苷酸(Chen等人, ...

Laser Scanning Confocal Microcopy for Arabidopsis Epidermal, Mesophyll, and Vascular Parenchyma Cells
Author:
Date:
2017-03-05
[Abstract]  Investigation of protein targeting to plastids in plants by confocal laser scanning microscopy (CLSM) can be complicated by numerous sources of artifact, ranging from misinterpretations from in vivo protein over-expression, false fluorescence in cells under stress, and organellar mis-identification. Our studies have focused on the plant-specific gene MSH1, which encodes a dual targeting protein that is regulated in its expression and resides within the nucleoid of a specialized plastid type (Virdi et al., 2016). Therefore, our methods have been optimized to study protein dual targeting to mitochondria and plastids, spatial and temporal regulation of protein expression, and sub-organellar localization, producing a protocol and set of experimental standards that ... [摘要]  通过共焦激光扫描显微镜(CLSM)对植物中质体进行蛋白质靶向的研究可能由于许多来源的伪像而复杂化,其范围从体内蛋白质过度表达的误解,应激细胞中的假荧光,和细胞器错误识别。我们的研究集中在植物特异性基因MSH1上,其编码双重靶向蛋白,其在其表达中被调节并且位于特定质体类型的核内(Virdi等人,2016)。因此,我们的方法已被优化,以研究蛋白质双重靶向线粒体和质体,蛋白质表达的空间和时间调节和亚细胞定位,产生其他人可能对这些研究有用的方案和一组实验标准。

背景 植物中的蛋白质靶向行为受氨基末端前序列以及可影响亚组织定位行为的内部序列特征的影响(Baginsky和Gruissem,2004)。结合启动子驱动的表达空间和时间调节,蛋白质的活性可以通过时间和位置而非常精确和专一。在MSH1的情况下,这种核编码的植物特异性蛋白质是双重靶向线粒体和质体(Xu et al。,2011)。启动子特征将其表达指导到生殖,表皮和血管薄壁细胞(Virdi等人,2016)。内部蛋白质特征将其定位于线粒体和质体核,以及质体类囊体膜。使用这里描述的方法,通过激光扫描共聚焦显微镜大大促进了这些不寻常的蛋白质特征的发现。使用更传统的细分器分割方法,大部分细节将被忽略。

Comments