{{'Search' | translate}}
 

Cell density meter

Company: Biochrom
Catalog#: WPA CO8000
Bio-protocol()
Company-protocol()
Other protocol()

Implementation of Blue Light Switchable Bacterial Adhesion for Design of Biofilms
Author:
Date:
2018-06-20
[Abstract]  Control of bacterial adhesions to a substrate with high precision in space and time is important to form a well-defined biofilm. Here, we present a method to engineer bacteria such that they adhere specifically to substrates under blue light through the photoswitchable proteins nMag and pMag. This provides exquisite spatiotemporal remote control over these interactions. The engineered bacteria express pMag protein on the surface so that they can adhere to substrates with nMag protein immobilization under blue light, and reversibly detach in the dark. This process can be repeatedly turned on and off. In addition, the bacterial adhesion property can be adjusted by expressing different pMag proteins on the bacterial surface and altering light intensity. This protocol provides light ... [摘要]  在空间和时间上高精度地控制细菌粘附到基底对于形成明确的生物膜是重要的。 在这里,我们提出了一种方法来设计细菌,使其在蓝光下通过光可切换蛋白质nMag和pMag特异性地粘附在基底上。 这为这些交互提供了精妙的时空遥控。 工程菌在表面上表达pMag蛋白,以便它们可以在蓝光下与nMag蛋白固定化的基质粘附,并在黑暗中可逆地分离。 该过程可以重复开启和关闭。 此外,通过在细菌表面表达不同的pMag蛋白质并改变光强度可以调节细菌粘附性质。 该协议提供了可高度空间和时间分辨率的细菌粘附的光可切换,可逆和可调控制,这使我们能够以极大的灵活性在基底上图案化细菌。

【背景】控制生物膜形成对于了解细菌在自然发生的生物膜中的社会相互作用至关重要(Flemming et。,2016)。这对生物膜在生物催化,生物传感和废物处理中的生物技术应用也特别重要(Zhou等人,2013; Jensen等人,2016)。生物膜的形成始终始于细菌与底物的粘附,这决定了生物膜中的空间组织(Liu等人,2016; Nadell等人,2016)。已经提出了许多策略来控制细菌粘附,例如通过脂质体融合利用生物正交反应基团修饰细菌表面(Elahipanah等,2016),将粘附分子固定在基质上(Sankaran等,等),2015; Zhang等人,2016; ...

Determination of the in vitro Sporulation Frequency of Clostridium difficile
Author:
Date:
2017-02-05
[Abstract]  The anaerobic, gastrointestinal pathogen, Clostridium difficile, persists within the environment and spreads from host-to-host via its infectious form, the spore. To effectively study spore formation, the physical differentiation of vegetative cells from spores is required to determine the proportion of spores within a population of C. difficile. This protocol describes a method to accurately enumerate both viable vegetative cells and spores separately and subsequently calculate a sporulation frequency of a mixed C. difficile population from various in vitro growth conditions (Edwards et al., 2016b). [摘要]  厌氧,胃肠道病原体,艰难梭菌在环境中持续存在,并通过其感染形式,孢子从宿主到宿主传播。为了有效地研究孢子形成,需要从孢子中进行营养细胞的物理分化以确定在C群体内孢子的比例。艰难的。该方案描述了分别精确地枚举活的营养细胞和孢子的方法,并随后计算混合的孢子形成频率。来自各种体外生长条件(Edwards等人,2016b)的难治性群体。

背景 孢子形成是一个复杂的发育过程,导致代谢休眠孢子的形成。 C的物理性质。艰难的孢子形式提供了许多环境胁迫和消毒剂的内在抵抗,允许其在宿主之外的长期生存(参见:Paredes-Sabja等人,2014年)。区分营养细胞和C孢子。已经开发了利用孢子的物理和抗性属性的各种技术,包括短时间暴露于湿热或乙醇(Burns等人,2010; Lawley& et al。,2010; Edwards等人,2014)。然而,根据C的应变,这些技术可能不经意地对孢子造成长期损害。难以测试,导致恢复率不准确。在这里,我们描述了使用比以前描述的较低浓度的乙醇(40%以下的乙醇)的优化方法以消除异质C中的所有营养细胞。艰难梭菌群体,而不降低孢子的生存力。该技术为量化C提供了高度可重现性和较不可变的结果。难产孢子孢子形成。

Comments