{{'Search' | translate}}
 

CR1000 Measurement and Control Dataloggers

Company: Campbell Scientific
Catalog#: CR1000
Bio-protocol()
Company-protocol()
Other protocol()

Monitoring Xylem Hydraulic Pressure in Woody Plants
Author:
Date:
2017-10-20
[Abstract]  Xylem sap circulates under either positive or negative hydraulic pressure in plants. Negative hydraulic pressure (i.e., tension) is the most common situation when transpiration is high, and several devices have been developed to quantify it accurately (e.g., Scholander pressure chamber, psychrometers). However, a proper measurement of positive xylem sap pressures may be critical when pressure is generated by the root system, allowing vessels to be refilled. Here, we describe two different methods to monitor positive xylem bulk pressure: the pressure gauge which can only be set onto a rootstock or a side branch and the point pressure sensor, which can allow measurements from a functioning plant without detopping or cutting. [摘要]  木质部汁液在正或负液压下在植物中循环。 负压液压(即,张力)是蒸腾量较高时最常见的情况,并且已经开发了几种装置来准确地对其进行定量(例如,Scholander压力室,温度计)。 然而,当根系产生压力时,正确的木质部汁液压力的正确测量可能是至关重要的,从而允许容器被再填充。 在这里,我们描述了两种不同的方法来监测阳性木质部体积压力:只能设置在砧木或侧枝上的压力计和点压力传感器,这可以允许从功能性植物进行测量而无需去顶部或切割。
【背景】虽然植物可以从关键水平的木质部栓塞中恢复,但针叶树(Brodribb和Cochard,2009)的水力传导损失<50%,被子植物(Urli等人,2013)<88%),确切的机制仍在争论之中。液体的上升由大气的蒸发需求驱动,这在水柱中产生负压(即,张力)和分子之间的氢键(即,凝聚力)通过良好接受的内聚力理论(dixon,1896; angeles等人,2004)将汁液从植物中提取出来。然而,可以在特定条件下记录正的木质部汁液压力,例如水饱和土壤结合非常低的蒸腾。已经显示这种机制在春季(sperry等人,1994)和经历冻融诱导栓塞的物种(charrier等人,2013年)中重新填充栓塞血管和2014)。栓塞血管的重新填充已被假设发生在金黄色葡萄球菌或葡萄球菌中的阳性和阴性木质部汁液压力下,例如(salleo等人,,1996)。然而,“紧张紧张”机制与凝聚力紧张理论不一致(zwieniecki和holbrook,2000)。此外,最近的作品表明,再灌注仅发生在vitis=""> ...

Forest GPP Calculation Using Sap Flow and Water Use Efficiency Measurements
Author:
Date:
2017-04-20
[Abstract]  This is a protocol to evaluate gross primary productivity (GPP) of a forest stand based on the measurements of tree’s sap flow (SF), 13C derived water use efficiency (WUE), and meteorological (met) data. GPP was calculated from WUE and stomatal conductance (gs), the later obtained from SF up-scaled from sampled trees to stand level on a daily time-scale and met data. WUE is obtained from 13C measurements in dated tree-ring wood and/or foliage samples. This protocol is based on the recently published study of Klein et al., 2016. [摘要]  这是一个根据树木流量(SF),超临界流量(WUE)和气象(met)的测量结果来评估林分总生产力(GPP)的方案,数据。从WUE和气孔导度(g s )计算GPP,后者是从日常时间尺度上从抽样树到定级的SF升高得到的,并且满足数据。 WUE是从日期的树木木材和/或树叶样品中的 13 C测量获得的。该协议基于最近发表的Klein等人的研究,2016年。

森林通过CO 2同化和呼吸以及通过影响CO 2浓度浓度在地球气候中对陆地碳循环发挥重要作用(Luyssaert et al。 2007; Bonan,2008; Canadell和Raupach,2008; Reichstein等人,2013)。总生产力(GPP),植物通过光合作用的碳吸收,是一般土地生物圈和特别是粮食生产中有机物质的最终来源。
&nbsp;生态系统规模中的GPP主要是利用涡度协方差(EC)技术得出的,因为EC测量的净生态系统CO 2 交换(NEE)和每日推测的生态系统呼吸(Re)之间的差异, 。后者通过根据对温度和土壤湿度的响应的经验方程,将测量的夜间NEE(其等于生态系统呼吸,Re)推广到白天获得(Aubinet等人,2000; Baldocchi,2003; Reichstein等人,2005; ...

Miniature External Sapflow Gauges and the Heat Ratio Method for Quantifying Plant Water Loss
Author:
Date:
2017-02-05
[Abstract]  External sapflow sensors are a useful tool in plant ecology and physiology for monitoring water movement within small stems or other small plant organs. These gauges make use of heat as a tracer of water movement through the stem and can be applied in both a laboratory and a field setting to generate data of relatively high temporal resolution. Typical outputs of these data include monitoring plant water use on a diurnal time scale or over a season (e.g., in response to increasing water deficit during drought) to gain insight into plant physiological strategies. This protocol describes how to construct the gauges, how best to install them and some expected data outputs. [摘要]  外部液流传感器是植物生态学和生理学中有用的工具,用于监测小茎或其他小植物器官内的水分运动。这些量规利用热作为通过杆的水运动的示踪剂,并且可以在实验室和场设置中应用,以产生相对高的时间分辨率的数据。这些数据的典型输出包括在日间时间尺度或季节(例如,响应干旱期间增加的水分亏缺)监测植物用水量,以了解植物生理策略。该协议描述了如何构建仪表,如何最好地安装它们以及一些预期的数据输出。

背景 Sapflow技术是植物生态学中的一种工具,它利用热作为茎或其他植物器官内水流的代表。虽然已经开发了各种液流方法(参见McElrone和Bleby,2011)的综述,外部微型液流流量计利用热比法(HRM)(Burgess et al。,2001),估计植物汁液速度。
&nbsp;人力资源管理系统依赖于两个热电偶,其均匀地沿着与液体流相同的轴线分开加热元件的两侧(Burgess et al。,2001)。 (注意:一般来说,水通过植物从根部向叶子移动,在蒸发蒸腾期间它通过气孔渗透而消失[E]。)马歇尔(1958)显示,对于低流速,下游温差T 1> 1 到上游温差T 2提供了热脉冲速度的精确估计,:
&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &nbsp;&nbsp; &lt; em&gt;&lt; ...

Comments