{{'Search' | translate}}
 

V-1 Tabletop Laboratory Animal Anesthesia System

V-1 Tabletop Laboratory Animal Anesthesia System

Company: VetEquip
Catalog#: 901806
Bio-protocol()
Company-protocol()
Other protocol()

Generation of Luciferase-expressing Tumor Cell Lines
Author:
Date:
2018-04-20
[Abstract]  Murine tumor models have been critical to advances in our knowledge of tumor physiology and for the development of effective tumor therapies. Essential to these studies is the ability to both track tumor development and quantify tumor burden in vivo. For this purpose, the introduction of genes that confer tumors with bioluminescent properties has been a critical advance for oncologic studies in rodents. Methods of introducing bioluminescent genes, such as firefly luciferase, by viral transduction has allowed for the production of tumor cell lines that can be followed in vivo longitudinally over long periods of time. Here we describe methods for the production of stable luciferase expressing tumor cell lines by lentiviral transduction. [摘要]  鼠肿瘤模型对于我们对肿瘤生理学知识和有效肿瘤治疗方法发展的进展至关重要。 这些研究的关键是能够跟踪肿瘤发展并量化体内肿瘤负荷。 为此,引入赋予肿瘤生物发光特性的基因已经成为啮齿动物肿瘤研究的重要进展。 通过病毒转导引入生物发光基因(例如萤火虫萤光素酶)的方法已经允许产生可以在体内纵向长时间地进行的肿瘤细胞系。 在这里我们描述了通过慢病毒转导产生稳定表达荧光素酶的肿瘤细胞系的方法。

【背景】体内跟踪细胞最重要的是能够通过微创方法从外部检测它们。使用来自萤火虫的荧光素酶(Photinus pyralis )的酶促生物发光是用于体内基于图像的细胞追踪的广泛使用的方法。生物发光已被用于各种体内应用,包括报告基因表达的无创成像(Herschman,2004),研究昼夜节律(Southern and Millar,2005),成像脑卒中(Vandeputte

萤火虫荧光素酶氧化物萤光素在分子氧,镁和三磷酸腺苷存在下在560nm产生黄绿色光(Wilson和Hastings,1998; ...

Quantitative 3D Time Lapse Imaging of Muscle Progenitors in Skeletal Muscle of Live Mice
Author:
Date:
2016-12-20
[Abstract]  For non-optically clear mammalian tissues, it is now possible to use multi-photon microscopy to penetrate deep into the tissue and obtain detailed single cell images in a live animal, i.e., intravital imaging. This technique is in principle applicable to any fluorescently marked cell, and we have employed it to observe stem cells during the regenerative process. Stem cell-mediated skeletal muscle regeneration in the mouse model has been classically studied at specific time points by sacrificing the animal and harvesting the muscle tissue for downstream analyses. A method for direct visualization of muscle stem cells to gain real-time information over a long period in a live mammal has been lacking. Here we describe a step-by-step protocol adapted from Webster et al. ... [摘要]  对于非光学清晰的哺乳动物组织,现在可以使用多光子显微镜深入渗透到组织中,并且在活体动物(即,即活体成像)中获得详细的单细胞图像。这种技术原则上适用于任何荧光标记的细胞,我们已经使用它来观察再生过程中的干细胞。小鼠模型中的干细胞介导的骨骼肌再生已经在特定时间点通过牺牲动物和收获肌肉组织进行下游分析进行了经典研究。一直缺乏直接观察肌肉干细胞以在活体哺乳动物中长时间获得实时信息的方法。在这里,我们将介绍一种从Webster等人修改的分步骤协议。 (2016),以定量测量稳态期间荧光标记(GFP,EYFP)肌肉干细胞和祖细胞的行为以及肌肉损伤后的行为。

背景干细胞和祖细胞的长期体内成像首先在无外科手术的连续生理再生中用于毛囊(Rompolas等人,2012)。相比之下,骨骼肌的干细胞在正常的内稳态期间主要是静止的和无活性的。需要肌肉的损伤来激活肌肉干细胞来安装再生过程。肌肉干细胞/祖细胞的体外成像已被广泛用于人造环境中的研究。为了了解在自然环境中再生过程中的肌肉干细胞行为,我们开发了一种在骨骼肌再生过程中对其进行成像的方法。我们的方法允许高达8小时的连续成像每次每次伤害后。这是在受伤/再生环境(Webster等人,2016)中首次观察到体内骨骼肌干细胞。

Comments