{{'Search' | translate}}
 

BamHI-HF®

BamHI-HF®

Company: New England Biolabs
Catalog#: R3136
Bio-protocol()
Company-protocol()
Other protocol()

Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences
Author:
Date:
2017-09-20
[Abstract]  Genome manipulation has become more accessible given the advent of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) editing technology. The Cas9 endonuclease binds a single stranded (single guide) RNA (sgRNA) fragment that recruits the complex to a corresponding genomic target sequence where it induces a double stranded break. Eukaryotic repair systems allow for the introduction of exogenous DNA, repair of existing mutations, or deletion of endogenous gene products. Targeting of Cas9 to multiple genomic positions (termed ‘multiplexing’) is achieved by the expression of multiple sgRNAs within the same nucleus. However, an ongoing concern of the CRISPR field has been the accidental targeting of Cas9 to alternative (‘off-target’) DNA locations within a genome. We ... [摘要]  鉴于CRISPR(集群定期间隔短回归重复)编辑技术的出现,基因组操纵变得更加易于使用。 Cas9核酸内切酶将募集复合物的单链(单向导)RNA(sgRNA)片段结合到相应的基因组靶序列,引发双链断裂。真核修复系统允许引入外源DNA,修复现有突变或内源基因产物的缺失。通过在同一核内表达多个sgRNA来实现Cas9对多个基因组位置的定位(称为“多重”)。然而,CRISPR领域的持续关注是将Cas9意外地定位到基因组内的替代(“脱靶”)DNA位置。我们将安装的人造Cas9靶序列的使用(称为人造基因座上的Cas9复制)描述为允许(i)与单个sgRNA复用的酵母基因组中的用途; (ii)减少/消除可能的脱靶效应,以及(iii)精确控制预定目标序列的放置。
【背景】CRISPR(集群定期间隔回归重复)机制已经在原核生物中演变为具有很高精度编辑任何基因组的能力的原始适应性免疫系统(Jinek等,2012; Sorek等,2013)。这种生物技术需要使用来自化脓性链球菌(或othologous物种)的内切核酸酶(Cas9),单个RNA'引导'序列和外源供体DNA(如果需要)。仅在短短几年内,CRISPR / ...

Single-step Marker Switching in Schizosaccharomyces pombe Using a Lithium Acetate Transformation Protocol
Author:
Date:
2016-12-20
[Abstract]  The ability to utilize different selectable markers for tagging or mutating multiple genes in Schizosaccharomyces pombe is hampered by the historical use of only two selectable markers, ura4+ and kanMX6; the latter conferring resistance to the antibiotic G418 (geneticin). More markers have been described recently, but introducing these into yeast cells often requires strain construction from scratch. To overcome this problem we and other groups have created transformation cassettes with flanking homologies to ura4+ and kanMX6 which enable an efficient and time-saving way to exchange markers in existing mutated or tagged fission yeast strains.

Here, we present a protocol for single-step marker switching by ...
[摘要]  利用不同的选择标记来标记或突变粟酒裂殖酵母中的多个基因的能力受到仅仅两种可选择标记的历史使用的阻碍,即 +和 kanMX6 ;后者赋予抗生素G418(遗传霉素)抗性。最近已经描述了更多的标记物,但是将它们引入酵母细胞通常需要从头开始施加应变。为了克服这个问题,我们和其他团队已经创建了具有与 + 和 kanMX6 的侧翼同源性的转换盒,这使得能够有效和省时的方式在现有的突变或标记的裂变酵母菌株中交换标记。
 在这里,我们提出了裂殖酵母,粟酒裂殖酵母(Schizosaccharomyces pombe)中醋酸锌转化的单步标记转换方案。以下我们将介绍如何将 ura4 + 标记交换到kanMX6 , natMX4 或 hphMX4标记,其分别对抗生素G418,海参(clonNAT)或潮霉素B提供抗性。我们还详细介绍了如何交换营养标记的任何 MX 标记,例如 arg3 + , his3 + , leu1 + 和 ura4 + 。

背景 这种用于粟酒裂殖酵母的单步骤标记交换方案允许将标记有类型的抗生素标记的任何标记或突变的基因替换为营养标记物(含有arg3 + , + ,并且已经构建了 ura4 + )并且为任何 MX交换遗传 ura4 + ...

Comments