{{'Search' | translate}}
 

Bioruptor® Pico Sonication device

Bioruptor® Pico sonication device

Company: Diagenode
Catalog#: B01060001
Bio-protocol()
Company-protocol()
Other protocol()

Quantifying Symmetrically Methylated H4R3 on the Kaposi’s Sarcoma-associated Herpesvirus (KSHV) Genome by ChIP-Seq
Author:
Date:
2018-03-20
[Abstract]  Post-translational modifications to histone tails contribute to the three-dimensional structure of chromatin and play an important role in determining the relative expression of nearby genes. One such modification is symmetric di-methylation of arginine residues, which may exhibit different effects on gene expression including blocking the binding of transcriptional activators, or recruiting repressive effector molecules. Recent ChIP-Seq studies have demonstrated the importance of cross-talk between different histone modifications in gene regulation. Thus, to acquire a comprehensive understanding of the combined efforts of these epigenetic marks, ChIP-Seq must be utilized for identifying specific enrichment on the chromatin. Tumorigenic herpesvirus KSHV, employs epigenetic mechanisms for ... [摘要]  组蛋白尾部的翻译后修饰有助于染色质的三维结构,并在确定附近基因的相对表达中起重要作用。一种这样的修饰是精氨酸残基的对称二甲基化,其可能对基因表达展现出不同的作用,包括阻断转录激活剂的结合或招募抑制效应分子。最近的ChIP-Seq研究已经证明不同组蛋白修饰之间在基因调节中的相互作用的重要性。因此,为了全面了解这些表观遗传标记的共同努力,必须利用ChIP-Seq来鉴定染色质上的特定富集。利用表观遗传机制进行基因调控,并且通过ChIP-Seq以全面,不偏倚的方式评估多种组蛋白修饰的相对丰度,我们可以获得关于病毒复制和发病机理的复杂机制的更好的见解。

【背景】卡波西肉瘤相关疱疹病毒(KSHV)是一种致癌性人类病毒,在其生命周期中有两个不同阶段。在最初感染后,KSHV在宿主中建立持续的终生感染,这对免疫受损的个体来说特别有问题。 KSHV可引起HIV / AIDS患者中的各种肿瘤,包括卡波西肉瘤和多发性B细胞淋巴瘤(Chang等,1994; Cesarman等,1995; Russo ,1996; Soulier ,1995)。 KSHV拥有大约165,000bp的大型基因组,编码近90种不同的开放阅读框,具有逃避宿主免疫监视系统,改变宿主细胞生长途径和产生感染性后代病毒粒子的充足工具。

在潜伏阶段期间,仅有一部分病毒基因被表达,其在本质上是致癌的并且还有助于病毒附加体复制和传递到分裂的肿瘤细胞中(Uppal等人,2014; ...

Coupling Exonuclease Digestion with Selective Chemical Labeling for Base-resolution Mapping of 5-Hydroxymethylcytosine in Genomic DNA
Author:
Date:
2018-03-05
[Abstract]  This protocol is designed to obtain base-resolution information on the level of 5-hydroxymethylcytosine (5hmC) in CpGs without the need for bisulfite modification. It relies on (i) the capture of hydroxymethylated sequences by a procedure known as ‘selective chemical labeling’ (see Szulwach et al., 2012) and (ii) the digestion of the captured DNA by exonucleases. After Illumina sequencing of the digested DNA fragments, an ad hoc bioinformatic pipeline extracts the information for further downstream analysis. [摘要]  该协议旨在获得CpGs中5-羟甲基胞嘧啶(5hmC)水平的碱基分辨率信息,而无需亚硫酸氢盐修饰。 它依赖于(i)通过称为“选择性化学标记”(参见Szulwach等人,2012)的方法捕获羟甲基化序列和(ii)通过外切核酸酶消化捕获的DNA。 在消化的DNA片段的Illumina测序之后,特设的生物信息学管道提取信息用于进一步的下游分析。

【背景】基因组DNA中胞嘧啶的甲基化可以被蛋白质读取,并且主要被翻译成基因沉默。基因组中的大多数CpG二核苷酸是甲基化的,包括位于基因调控区如增强子的那些。然而,当需要时,这些CpG可以通过Ten Eleven Translocation(TET)酶将甲基氧化并且通过碱基切除修复系统用未甲基化的胞嘧啶置换来去甲基化。 5-羟甲基胞嘧啶(5hmC)是5-甲基胞嘧啶的第一个氧化衍生物,并且在基因组中绘制该修饰的碱基提供了关于正在进行活性去甲基化的区域的信息。尽管选择性化学标记(SCL)可以非常特异地检测5hmC,但该技术的分辨率受DNA片段大小的限制,特别是当捕获的DNA中存在多个CpG时。为了提高分辨率,我们引入了使用外切核酸酶的消化步骤,所述核酸外切酶将DNA分子修剪成靠近羟甲基化的胞嘧啶(Sérandour et。,2016)。然后对测序读数进行适当的生物信息学处理,然后将羟甲基化评分赋予捕获的CpG。

Identification of Methylated Deoxyadenosines in Genomic DNA by dA6m DNA Immunoprecipitation
Author:
Date:
2016-11-05
[Abstract]  dA6m DNA immunoprecipitation followed by deep sequencing (DIP-Seq) is a key tool in identifying and studying the genome-wide distribution of N6-methyldeoxyadenosine (dA6m). The precise function of this novel DNA modification remains to be fully elucidated, but it is known to be absent from transcriptional start sites and excluded from exons, suggesting a role in transcriptional regulation (Koziol et al., 2015). Importantly, its existence suggests that DNA might be more diverse than previously believed, as further DNA modifications might exist in eukaryotic DNA (Koziol et al., 2015). This protocol describes the method to perform dA6m DNA immunoprecipitation (DIP), as was applied to characterize the first dA6m ... [摘要]  原代小胶质细胞,在单一培养或与神经元或星形胶质细胞共培养,是研究在中枢神经系统(CNS)中小胶质炎症反应和细胞类型特异性相互作用的机制的强大工具。这个协议提供了如何从新生小鼠幼崽制备高纯度原代小胶质细胞的细节。总的步骤包括脑细胞解离,混合胶质细胞培养和小胶质细胞分离。

[背景] 近年来,神经炎症已成为神经科学研究的热点领域。在患有各种神经疾病的患者的脑中观察到炎症反应,例如神经胶质激活和细胞因子上调(Fan等人,2015; Koshimori等人,2015;花园和坎贝尔,2016)。神经炎症不仅被认为是脑中病理变化的结果,而且也是疾病进展的原因(Schwartz等人,2013)。此外,炎症通路的生理功能,其重要性以前被低估,正被揭示为惊人的多才多艺。例如,补体信号通路的激活通常在神经疾病的中枢神经系统(CNS)中观察到,并且被怀疑参与疾病病理生理学(Michailidou等人,2015; Loeffler ...

Comments