Author:
Date:
2015-08-20
[Abstract] Salt stress is a major issue for plants growing in both natural and agricultural settings (Deinlein et al., 2014). For example, irrigation can lead to the build up of salts in the soil as the irrigation water evaporates, leading to salinization, inhibition of plant growth, reduced productivity and eventually to loss of agriculturally usable land. One key element in trying to understand how salt stress impacts plant growth and development, in defining plant salt sensing and response mechanisms and eventually in the breeding or engineering of plants resistant to this stress is monitoring their salt uptake and redistribution. Methods such as imaging Na-sensitive fluorescent probes (Kader and Lindberg, 2005) and use of Na-ion selective microelectrodes (Shabala et al., 2005) ...
[摘要] 盐胁迫是对于在自然和农业环境中生长的植物的主要问题(Deinlein等人,2014)。例如,当灌溉水蒸发时,灌溉可导致土壤中盐的积累,导致盐化,抑制植物生长,降低生产力并最终导致农业上可用的土地损失。试图了解盐胁迫如何影响植物生长和发育,确定植物盐感测和响应机制以及最终在抗这种胁迫的植物育种或工程中的一个关键因素是监测它们的盐吸收和再分布。诸如成像Na敏感性荧光探针(Kader和Lindberg,2005)和使用Na离子选择性微电极(Shabala等人,2005)的方法提供了在植物中遵循Na水平的潜力非破坏性的方式,但是在技术上要求和不适用于现场,或甚至许多实验室条件。然而,组织取样,随后电感耦合等离子体光谱(ICP)代表了监测植物样品中的总Na水平的简单,定量测定。 ICP分析也适用于可以收获样品的任何环境中的植物。该方法使用酸溶液中的组织消化,随后将所得样品注入电感耦合等离子体光谱仪并监测来自Na的特征发射光谱。由于Na是稳定的,不需要复杂的样品保存。需要注意来自用于样品制备的水和来自玻璃器皿的标准品和样品中可能的Na污染,否则,该方法简单且稳定。
|