{{'Search' | translate}}
 

35 mm Dish, No. 1.5 Coverslip, 20 mm Glass Diameter, Uncoated

35 mm碟

Company: MATTEK
Catalog#: P35G-1.5-20-C
Bio-protocol()
Company-protocol()
Other protocol()

Measurement of Mechanical Tension at cell-cell junctions using two-photon laser ablation
Author:
Date:
2016-12-20
[Abstract]  The cortical actomyosin cytoskeleton is found in all non-muscle cells where a key function is to control mechanical force (Salbreux et al., 2012). When coupled to E-cadherin cell-cell adhesion, cortical actomyosin generates junctional tension that influences many aspects of tissue function, organization and morphogenesis (Lecuit and Yap, 2015). Uncovering the molecular mechanisms underlying the generation of junctional tension requires tools for measuring it in live cells with a high spatio-temporal resolution. For this, we have set up a technique of laser ablation, in which we use the high power output of a two-photon laser to physically cut the actin cortex at the sites of cell-cell adhesion labeled with E-cadherin-GFP. Tension, thus is visualized as the outwards recoil of the ... [摘要]  皮质肌动球蛋白细胞骨架在所有非肌肉细胞中发现,其中关键功能是控制机械力(Salbreux等人,2012)。当与E-钙粘蛋白细胞粘附相结合时,皮层肌动蛋白产生连接性张力,影响组织功能,组织和形态发生的许多方面(Lecuit和Yap,2015)。揭示连接张力生成所依赖的分子机制需要用于在活细胞中测量具有高时空分辨率的工具。为此,我们设计了一种激光烧蚀技术,其中我们使用双光子激光器的高功率输出来在E-cadherin-GFP标记的细胞粘附部位物理切割肌动蛋白皮质。因此,张力可视化为在切割/切割之后定义连接点的顶点的向外反冲。后坐力与时间的分析允许提取与消融之前施加到接合处的收缩力量(初始反冲)相关的参数以及连接的弹性与连接皮层浸入的介质(细胞质)的粘度之间的比率。使用这种方法,我们发现Src蛋白酪氨酸激酶(Gomez等人,2015);肌动蛋白结合蛋白如原肌球蛋白(Caldwell等,2014)和N-WASP(Wu等人,2014); Myosin II(Priya等人,2015)和coronin-1B(Michael等人,2016)有助于负责在细胞细胞产生张力的分子装置路口该协议描述了用于设置激光烧蚀实验的实验程序,以及如何优化消融和采集条件以实现连接张力的最佳测量。它还提供了评估收缩力变化以及细胞弹性和/或细胞质粘度所需的后采集分析的完整描述。

背景 ...

Laser Microirradiation and Temporal Analysis of XRCC1 Recruitment to Single-strand DNA Breaks
Author:
Date:
2016-03-05
[Abstract]  The DNA molecule is exposed to a multitude of damaging agents that can compromise its integrity: single (SSB) and double strand breaks (DSB), intra- or inter-strand crosslinks, base loss or modification, etc. Many different DNA repair pathways coexist in the cell to ensure the stability of the DNA molecule. The nature of the DNA lesion will determine which set of proteins are needed to reconstitute the intact double stranded DNA molecule. Multiple and sequential enzymatic activities are required and the proteins responsible for those activities not only need to find the lesion to be repaired among the millions and millions of intact base pairs that form the genomic DNA but their activities have to be orchestrated to avoid the accumulation of toxic repair intermediates. For ... [摘要]  DNA分子暴露于多种损害剂,其可损害其完整性:单链(SSB)和双链断裂(DSB),链内或链间交联,碱基丢失或修饰等。 >许多不同的DNA修复途径共存于细胞中以确保DNA分子的稳定性。 DNA损伤的性质将决定重组完整的双链DNA分子需要哪组蛋白质。需要多个和顺序的酶活性,负责那些活性的蛋白质不仅需要在形成基因组DNA的数百万和数百万个完整碱基对中找到待修复的损伤,而且它们的活性必须被协调以避免毒性修复中间体。例如在单链断裂(SSB)的修复中,将需要蛋白质PARP1,XRCC1,聚合酶β和连接酶III,并且它们的活性协调以确保损伤的正确修复。
此外,DNA不是自由的在核中但组织在具有不同压实水平的染色质。因此DNA修复蛋白质处理这种核组织以确保有效的DNA修复。在损伤诱导后研究核中DNA修复蛋白质的分布的一种方式是使用激光微辐射,其中可以在细胞核的局部区域中诱导特定类型的DNA损伤。所使用的激光的波长和强度将决定被诱导的主要类型的损伤。重要的是注意,在微照射部位也可以产生其他损伤。
用荧光蛋白XRCC1-GFP转染的活细胞在共聚焦显微镜下进行微照射,并在1分钟内跟踪荧光蛋白的募集动力学。在我们的协议中,使用405nm激光来诱导SSB。

Dictyostelium Cultivation, Transfection, Microscopy and Fractionation
Author:
Date:
2015-06-05
[Abstract]  The real time visualisation of fluorescently tagged proteins in live cells using ever more sophisticated microscopes has greatly increased our understanding of the dynamics of key proteins during fundamental physiological processes such as cell locomotion, chemotaxis, cell division and membrane trafficking. In addition the fractionation of cells and isolation of organelles or known compartments can often verify any subcellular localisation and the use of tagged proteins as bait for the immunoprecipitation of material from cell fractions can identify specific binding partners and multiprotein complexes thereby helping assign a function to the tagged protein. We have successfully applied these techniques to the Dictyostelium discoideum protein TSPOON that is part of an ancient ... [摘要]  使用更复杂的显微镜,活细胞中荧光标记的蛋白质的实时可视化大大增加了我们对基本生理过程如细胞运动,趋化性,细胞分裂和膜运输过程中关键蛋白质动力学的了解。此外,细胞的分级和分离细胞器或已知的隔室通常可以验证任何亚细胞定位,并且使用标记的蛋白质作为诱饵用于来自细胞部分的物质的免疫沉淀可以鉴定特异性结合配偶体和多蛋白复合物,从而有助于赋予功能标记蛋白。我们已经成功地将这些技术应用于作为古代异构六聚体膜转运复合物的一部分的盘基网柄菌discoideum蛋白TSPOON(Hirst等,2013)。 ...

Comments