{{'Search' | translate}}
 

FisherbrandTM Square Disposable Petri Dish with Grid

Fisherbrand TM方形一次性培养皿网格

Company: Thermo Fisher Scientific
Catalog#: 08-757-11A
Bio-protocol()
Company-protocol()
Other protocol()

A Live-imaging, Heat Shock-inducible System to Measure Aux/IAA Degradation Rates in Planta
Author:
Date:
2016-08-05
[Abstract]  An emerging theme in biology is the importance of cellular signaling dynamics. In addition to monitoring changes in absolute abundance of signaling molecules, many signal transduction pathways are sensitive to changes in temporal properties of signaling components (Purvis and Lahav, 2013). The phytohormone auxin regulates myriad processes in plant development. Many of these require the nuclear auxin signaling pathway, in which degradation of the Aux/IAA repressor proteins allows for transcription of auxin-responsive genes (Korasick et al., 2015). Using a heterologous yeast system, we found that Aux/IAAs exhibit a range of auxin-induced degradation rates when co-expressed in isolation with F-box proteins (Havens et al., 2012). Subsequent studies connecting signaling ... [摘要]  生物学中一个新兴的主题是细胞信号传导动力学的重要性。除了监测信号分子的绝对丰度的变化,许多信号转导途径对信号传导组分的时间性质的变化敏感(Purvis和Lahav,2013)。植物激素生长素调节植物发育中的无数过程。这些中的许多需要核生长素信号通路,其中Aux/IAA阻抑蛋白的降解允许生长素应答基因的转录(Korasick等人,2015)。使用异源酵母系统,我们发现当与F-box蛋白分离共表达时,Aux/IAAs表现出一系列生长素诱导的降解速率(Havens等人,2012)。随后的连接信号动力学与植物生长和发育的研究证实Aux/IAAs在植物中显示相似的差异(Guseman等人,2015; Moss等人,2015)。在这里,我们详细描述热休克诱导荧光降解系统捕获Aux/IAA实时在活植物根中的降解的使用。通过采用这种方法,我们能够获得高的Aux/IAA表达,并避免抑制周转,反馈和沉默的长期影响。降解取决于Aux/IAA降解的存在,并且对外源生长素的反应速率增加。

Quantification of Sodium Accumulation in Arabidopsis thaliana Using Inductively Coupled Plasma Optical Emission Spectrometery (ICP-OES)
Author:
Date:
2015-08-20
[Abstract]  Salt stress is a major issue for plants growing in both natural and agricultural settings (Deinlein et al., 2014). For example, irrigation can lead to the build up of salts in the soil as the irrigation water evaporates, leading to salinization, inhibition of plant growth, reduced productivity and eventually to loss of agriculturally usable land. One key element in trying to understand how salt stress impacts plant growth and development, in defining plant salt sensing and response mechanisms and eventually in the breeding or engineering of plants resistant to this stress is monitoring their salt uptake and redistribution. Methods such as imaging Na-sensitive fluorescent probes (Kader and Lindberg, 2005) and use of Na-ion selective microelectrodes (Shabala et al., 2005) ... [摘要]  盐胁迫是对于在自然和农业环境中生长的植物的主要问题(Deinlein等人,2014)。例如,当灌溉水蒸发时,灌溉可导致土壤中盐的积累,导致盐化,抑制植物生长,降低生产力并最终导致农业上可用的土地损失。试图了解盐胁迫如何影响植物生长和发育,确定植物盐感测和响应机制以及最终在抗这种胁迫的植物育种或工程中的一个关键因素是监测它们的盐吸收和再分布。诸如成像Na敏感性荧光探针(Kader和Lindberg,2005)和使用Na离子选择性微电极(Shabala等人,2005)的方法提供了在植物中遵循Na水平的潜力非破坏性的方式,但是在技术上要求和不适用于现场,或甚至许多实验室条件。然而,组织取样,随后电感耦合等离子体光谱(ICP)代表了监测植物样品中的总Na水平的简单,定量测定。 ICP分析也适用于可以收获样品的任何环境中的植物。该方法使用酸溶液中的组织消化,随后将所得样品注入电感耦合等离子体光谱仪并监测来自Na的特征发射光谱。由于Na是稳定的,不需要复杂的样品保存。需要注意来自用于样品制备的水和来自玻璃器皿的标准品和样品中可能的Na污染,否则,该方法简单且稳定。

Comments