{{'Search' | translate}}
 

D-Glucose 6-phosphate sodium salt

D-葡萄糖-6-磷酸钠盐

Company: Sigma-Aldrich
Catalog#: G7879
Bio-protocol()
Company-protocol()
Other protocol()

Microbial Mutagenicity Assay: Ames Test
Author:
Date:
2018-03-20
[Abstract]  The Microbial mutagenicity Ames test is a bacterial bioassay accomplished in vitro to evaluate the mutagenicity of various environmental carcinogens and toxins. While Ames test is used to identify the revert mutations which are present in strains, it can also be used to detect the mutagenicity of environmental samples such as drugs, dyes, reagents, cosmetics, waste water, pesticides and other substances which are easily solubilized in a liquid suspension. We present the protocol for conducting Ames test in the laboratory. [摘要]  微生物致突变性艾姆斯试验是一种细菌生物测定法,用于体外评估各种环境致癌物和毒素的致突变性。 虽然艾姆斯试验可用于鉴定菌株中存在的回复突变,但它也可用于检测环境样品如药物,染料,试剂,化妆品,废水,农药和易溶于水的其他物质的致突变性 液体悬浮液。 我们提供在实验室进行艾姆斯测试的协议。

【背景】微生物艾姆斯试验是一种简单,快速和强大的细菌试验,由不同的菌株和鼠伤寒沙门氏菌/ E的应用组成。用于确定致突变潜力(Levin等人,1982; Gupta等人,2009)。 1975年,艾姆斯和他的追随者对传统的艾姆斯检测方案进行了标准化,并于20世纪80年代进行了再次评估(Maron and Ames,1983)。替换已有突变的新突变的诱导允许恢复基因功能。新形成的突变细胞允许在没有组氨酸的情况下生长并形成菌落,因此该测试也被称为“逆转测定法”(Ames,1971)。虽然传统的艾姆斯测试对于初始监测致突变化合物来说非常费力且费时,但是通过使其更便利,液体悬浮液的小型化显着地影响了可用性。标准剂量(2μl,5μl,10μl,50μl和100μl)用于评估从低浓度到高浓度的致突变性(Hayes,1982)。小鼠肝脏已被用作制备匀浆9,000xg(S9肝脏级分)的组织,而在 ...

Isolation and Detection of the Chlorophyll Catabolite Hydroxylating Activity from Capsicum annuum Chromoplasts
Author:
Date:
2017-09-20
[Abstract]  Hydroxylation of chlorophyll catabolites at the so-called C32 position (Hauenstein et al., 2016) is commonly found in all plant species analyzed to date. Here we describe an in vitro hydroxylation assay using Capsicum annuum chromoplast membranes as a source of the hydroxylating activity, which converts the substrate epi-pFCC (epi-primary Fluorescent Chlorophyll Catabolite) (Mühlecker et al., 2000) to epi-pFCC-OH. [摘要]  所谓C32位置的叶绿素分解代谢物的羟基化(Hauenstein et al。,2016)通常在迄今为止分析的所有植物物种中发现。 在这里,我们描述了使用Capsicum annuum chromoplast membrane作为羟基化活性的来源的体外羟基化测定法,其将底物epi-pFCC(外显子荧光叶绿素Catabolite)(Mühlecker等,2000)转化为epi-pFCC-OH。
【背景】在叶片衰老和果实成熟期间,吸光叶绿素被降解成非荧光分解代谢物,以防止氧化损伤。叶绿素分解途径(PAO / phyllobilin途径)由几个酶催化的连续步骤组成,最终降解产物称为叶绿素,最终储存在液泡中(Kräutler,2016)。外源荧光叶绿素Cepolite(epi-pFCC)是第一种非光毒性中间体。在叶绿体中形成后,可以发生epi-pFCC的侧链修饰,其中大部分发生在叶绿体外。然而,这些修饰之一是由内部叶绿体包膜酶TIC55(铁氧还蛋白(Fd)依赖性非血红素加氧酶家族的成员)催化的C32位置(图1)的羟基化。 TIC55含有Rieske和单核铁结合结构域,并显示其需要Fd还原系统以及分子氧作为其羟基化活性。在这里我们描述了TIC55的体外酶测定法,其用于表征红辣椒色素体的表达pFCC羟基化酶活性。
图1.叶绿素分解途径的概述,突出了从epi-pFCC到epi-pFCC-OH的TIC55催化反应。 ...

Determination of Recombinant Mannitol-1-phosphate Dehydrogenase Activity from Ectocarpus sp.
Author:
Date:
2016-11-05
[Abstract]  Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly, but not exclusively, in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase (M1PDH, EC 1.1.1.17) and a mannitol-1-phosphatase (M1Pase, EC 3.1.3.22). This protocol describes the biochemical characterization of the recombinant catalytic domain of one ... [摘要]  褐藻属于与绿色植物和动物遥远相关的系统发生谱系,并且主要发现于但不限于潮间带,一种苛刻且频繁变化的环境。由于它们独特的进化史和它们的栖息地,褐藻具有其代谢中的一些特性。其中之一是甘露醇循环,其在其生理学中发挥中心作用,因为甘露糖醇充当碳储存,渗透保护剂和抗氧化剂。该多元醇通过甘露醇-1-磷酸酯脱氢酶(M1PDH,EC 1.1.1.17)和甘露醇-1-磷酸酶(M1Pase,EC 3.1.3.22)的作用直接从光生酸酯果糖-6-磷酸衍生。该协议描述了在Ectocarpus中鉴定的三种M1PDH之一的重组催化结构域的生物化学表征。该重组催化结构域(下文称为M1PDHcat)使用NAD(H)作为辅因子催化果糖-6-磷酸(F6P)向甘露醇-1-磷酸(M1P)的可逆转化。 M1PDHcat活性在两个方向上测定,即,F6P还原和M1P氧化(图1)。

src =
图1.甘露醇-1-磷酸脱氢酶的可逆反应


Comments