{{'Search' | translate}}
 

Poly(ethylene glycol)

聚乙二醇)

Company: Sigma-Aldrich
Catalog#: 81240
Bio-protocol()
Company-protocol()
Other protocol()

Isolation and Detection of the Chlorophyll Catabolite Hydroxylating Activity from Capsicum annuum Chromoplasts
Author:
Date:
2017-09-20
[Abstract]  Hydroxylation of chlorophyll catabolites at the so-called C32 position (Hauenstein et al., 2016) is commonly found in all plant species analyzed to date. Here we describe an in vitro hydroxylation assay using Capsicum annuum chromoplast membranes as a source of the hydroxylating activity, which converts the substrate epi-pFCC (epi-primary Fluorescent Chlorophyll Catabolite) (Mühlecker et al., 2000) to epi-pFCC-OH. [摘要]  所谓C32位置的叶绿素分解代谢物的羟基化(Hauenstein et al。,2016)通常在迄今为止分析的所有植物物种中发现。 在这里,我们描述了使用Capsicum annuum chromoplast membrane作为羟基化活性的来源的体外羟基化测定法,其将底物epi-pFCC(外显子荧光叶绿素Catabolite)(Mühlecker等,2000)转化为epi-pFCC-OH。
【背景】在叶片衰老和果实成熟期间,吸光叶绿素被降解成非荧光分解代谢物,以防止氧化损伤。叶绿素分解途径(PAO / phyllobilin途径)由几个酶催化的连续步骤组成,最终降解产物称为叶绿素,最终储存在液泡中(Kräutler,2016)。外源荧光叶绿素Cepolite(epi-pFCC)是第一种非光毒性中间体。在叶绿体中形成后,可以发生epi-pFCC的侧链修饰,其中大部分发生在叶绿体外。然而,这些修饰之一是由内部叶绿体包膜酶TIC55(铁氧还蛋白(Fd)依赖性非血红素加氧酶家族的成员)催化的C32位置(图1)的羟基化。 TIC55含有Rieske和单核铁结合结构域,并显示其需要Fd还原系统以及分子氧作为其羟基化活性。在这里我们描述了TIC55的体外酶测定法,其用于表征红辣椒色素体的表达pFCC羟基化酶活性。
图1.叶绿素分解途径的概述,突出了从epi-pFCC到epi-pFCC-OH的TIC55催化反应。 ...

Plasma Membrane Preparation from Lilium davidii and Oryza sativa Mature and Germinated Pollen
Author:
Date:
2017-05-20
[Abstract]  Pollen germination is an excellent process to study cell polarity establishment. During this process, the tip-growing pollen tube will start elongating. The plasma membrane as the selectively permeable barrier that separates the inner and outer cell environment plays crucial roles in this process. This protocol described an efficient aqueous polymer two-phase system followed by alkaline solution washing to prepare Lilium davidii or Oryza sativa plasma membrane with high purity. [摘要]  花粉萌发是研究细胞极性的一个很好的过程。在此过程中,尖端生长的花粉管将开始延长。作为分离内外细胞环境的选择性渗透屏障的质膜在该过程中起关键作用。该方案描述了一种有效的含水聚合物两相体系,接着进行碱性溶液洗涤以制备高纯度的百合百合或水稻质膜。

背景 花粉质膜包含对花粉管生长和受精至关重要的各种蛋白质,例如受体样激酶(Wang等人,2016)和离子通道(Hamilton等人, em>,2015)。分离纯质膜(PM)是综合PM蛋白质组分析的前提。 PM制备主要有四种方法:差速离心,密度梯度离心,制备型自由流动电泳和含水聚合物两相体系。通常,差速离心通常与密度梯度离心合并,以根据其大小,形状和密度分离亚细胞组分。这种技术是快速的,但是由于细胞器密度的重叠,所得的PM产率和纯度都很低(Schindler和Nothwang,2006)。自由流动电泳和水性聚合物两相系统根据其表面性质分离膜囊泡。这两种方法可以富集PM足够纯化蛋白质组学分析(Alexandersson等人,2007)。然而,用于自由流动电泳的仪器操作复杂(Sandelius等人,1986)。相比之下,通过离心可以容易且快速地进行含水聚合物两相体系,使得该方法对PM制备更方便。 ...

Protein Degradation Assays in Arabidopsis Protoplasts
Author:
Date:
2015-02-20
[Abstract]  Plant transformation and exogenous protein expression is essential for molecular biology and biotechnology. Current approaches of stable plant transformation might be problematic and very time-consuming. Because of this, transient expression in protoplasts has become valuable alternative, being less cost and time-effective at the same time. Excellent for eukaryotic proteins, representing a natural cell habitat, protoplast isolation is widely used in protein interaction visualization techniques, like BiFC (Bimolecular fluorescence complementation) and FRET (Förster resonance energy transfer). In this protocol we present a another use of Arabidopsis protoplast in protein degradation assay, proving its high versatility as a tool in proteomics.
[摘要]  植物转化和外源蛋白质表达是分子生物学和生物技术的必要条件。 目前稳定植物转化的方法可能有问题且非常耗时。 因此,在原生质体中的瞬时表达已经成为有价值的替代方案,同时成本更低和时间有效。 优异的真核蛋白,代表天然细胞栖息地,原生质体分离广泛应用于蛋白质相互作用可视化技术,如BiFC(双分子荧光互补)和FRET(弗尔斯特共振能量转移)。 在本协议中,我们提出了在蛋白质降解测定中使用拟南芥原生质体,证明其作为蛋白质组学工具的高度通用性。

Comments