[2-3H]Mannose-labeling and Analysis of N-linked Oligosaccharides
|
Author:
Date:
2017-07-20
[Abstract] Modifications of N-linked oligosaccharides of glycoproteins soon after their biosynthesis correlate to glycoprotein folding status. These alterations can be detected in a sensitive way by pulse-chase analysis of [2-3H]mannose-labeled glycoproteins, with enzymatic removal of labeled N-glycans, separation according to size by HPLC and radioactive detection in a scintillation counter.
[摘要] 其生物合成后不久,糖蛋白的N-连接寡糖的修饰与糖蛋白折叠状态相关。 可以通过脉冲追踪分析[2- 3 H]甘露糖标记的糖蛋白,通过酶切除标记的N-聚糖来检测这些变化,根据大小通过HPLC分离和放射性 在闪烁计数器中检测。 【背景】在将新生多肽进入ER后,进行若干翻译后修饰,这对于折叠,成熟和质量控制过程至关重要。加入核糖寡糖Glc 3 N 3 GlcNAc 2以产生N-连接的糖蛋白是非常常见的修饰,首先发生(Benyair等人,2011)。前体N-聚糖的加工通过在早期分泌室(Tannous等人,2015)中创建识别标签来引导糖蛋白成熟和质量控制机制。在后期阶段,在整个分泌途径中,寡糖的核心作为将糖链扩展成复合聚糖的平台,其结构涉及糖蛋白的运输和功能(Kamiya等人, ,2012)。由于早期N-连接的聚糖修饰反映糖蛋白生物合成和质量控制,寡糖加工已成为许多研究的主题(Avezov等人,2010; Hosokawa等人。,2010; Ninagawa等人,2014; Ogen-Shtern等人,2016)。糖蛋白组学方法大大改善了N-聚糖的表征,但它们不允许研究早期分泌途径中聚糖加工的动力学。  这里我们描述一种用于分离和分析代谢标记的N-连接寡糖的简化脉冲追踪方法。该方法包括通过[2- H] ...
|
|
Optogenetic Stimulation and Recording of Primary Cultured Neurons with Spatiotemporal Control
|
Author:
Date:
2017-06-20
[Abstract] We studied a network of cortical neurons in culture and developed an innovative optical device to stimulate optogenetically a large neuronal population with both spatial and temporal precision. We first describe how to culture primary neurons expressing channelrhodopsin. We then detail the optogenetic setup based on the workings of a fast Digital Light Processing (DLP) projector. The setup is able to stimulate tens to hundreds neurons with independent trains of light pulses that evoked action potentials with high temporal resolution. During photostimulation, network activity was monitored using patch-clamp recordings of up to 4 neurons. The experiment is ideally suited to study recurrent network dynamics or biological processes such as plasticity or homeostasis in a network of neurons ...
[摘要] 我们研究了文化中的皮层神经元网络,并开发了一种创新的光学装置,以空间和时间精确度激发大量神经元。 我们首先描述如何培养表达channelorhodopsin的原代神经元。 然后,我们将根据快速数字光处理(DLP)投影机的工作原理来详细说明光遗传设置。 该设置能够用独立的光脉冲训练数十到数百个神经元,以高时间分辨率诱发动作电位。 在光刺激期间,使用多达4个神经元的膜片钳记录监测网络活动。 该实验非常适合研究复杂的网络动力学或生物过程,如神经元网络中的可塑性或体内平衡,当子群体由其特征(相关性,速率和大小)进行精细控制的不同刺激激活时。 【背景】光致遗传学提供以毫秒精度控制神经元活动的平均值。然而,神经元通常通过同时激活整个群体的光的闪光或通过在整个视野上的时间调制强度的光同时激活(Boyden等人,2005)。然而,存在几种空间调节光并已被用于使谷氨酸不起作用的方法(Nawrot等人,2009)或激活表达神经元的通道视紫质(ChR2)(Guo等人,2009)(用于审查刺激神经元的可用方法具有空间和时间分辨率参见Anselmi等人,2015)。 为了获得刺激的空间控制,第一种可能性是使用激光并将其光束快速移动到不同位置。例如,通过用声光偏转器偏转激光束已经实现了在不同树枝状位置处的谷蛋白解冻(Shoham等人,2005)。只有我们在有限的区域内足够缓慢地调节光强度,这个策略才可能是可行的。或者,可以使用相位或强度的光调制器来实现光的空间图案。基于相位调制的全息技术允许以三维空间精度获得图像,但是可以以仅100Hz的速率显示图案(Papagiakoumou等人,2010)。如果二维图案是足够的,则可以通过将投影仪或阵列的LED放置在样品的共轭平面中来简单地获得强度调制(Farah等人,2007; ...
|
|
In vitro Antigen-presentation Assay for Self- and Microbial-derived Antigens
|
Author:
Date:
2017-06-05
[Abstract] Antigen presenting cells (APC) are able to process and present to T cells antigens from different origins. This mechanism is highly regulated, in particular by Patter Recognition Receptor (PRR) signals. Here, I detail a protocol designed to assess in vitro the capacity of APC to present antigens derived from bacteria, apoptotic and infected apoptotic cells.
[摘要] 抗原呈递细胞(APC)能够处理和呈递来自不同来源的T细胞抗原。这种机制是高度调节的,特别是通过Patter Recognition Receptor(PRR)信号。在这里,我详细说明了一种设计用于评估体外的APC方案,用于展示来源于细菌,凋亡和感染的凋亡细胞的抗原。
背景 T细胞淋巴细胞在其表面上表达T细胞受体(TCR),其允许识别作为与主要组织相容性复合物(MHC)分子结合的抗原加工和呈递的抗原的细胞(自身)或微生物(非自身)抗原)呈递细胞(APC)。 APC能够处理抗原并将其呈递给T细胞,并且MHC-TCR相互作用是感染和自身免疫应答期间T细胞活化的关键步骤。  以前的作品已经描述了基于刺激模式识别受体(PRR),例如toll样受体(TLR)(Blander和Medzhitov,2004和2006)的抗原呈递的调节机制。实际上,特异性地来自含有微生物病原体的吞噬体的TLR信号有利于在MHC-II分子内呈递非自身抗原。另一方面,凋亡细胞吞噬后产生的自身抗原由于不存在TLR刺激而导致溶酶体降解。然而,当两者都来自感染的凋亡细胞并且同时由相同的吞噬体携带时,自身和非自身抗原的分离不会发生,其由针对抗原呈递的TLR信号最佳地定制。已经使用骨髓来源的树突状细胞(BMDC)和凋亡性小鼠B细胞 - ...
|
|