{{'Search' | translate}}
 

MURASHIGE & SKOOG MEDIUM INCLUDING VITAMINS

MURASHIGE&SKOOG中包含维生素

Company: Duchefa Biochemie
Catalog#: M0222
Bio-protocol()
Company-protocol()
Other protocol()

In vitro Nitrate Reductase Activity Assay from Arabidopsis Crude Extracts
Author:
Date:
2018-04-05
[Abstract]  Nitrate reductase (NR) reduces the major plant nitrogen source, NO3-, into NO2-. NR activity can be measured by its final product, nitrite through its absorbance under optimized condition. Here, we present a detailed protocol for measuring relative enzyme activity of NR from Arabidopsis crude extracts. This protocol offers simple procedure and data analysis to compare NR activity of multiple samples. [摘要]  硝酸还原酶(NR)将主要的植物氮源NO 3 N-2还原为NO 2 - 2。 NR活性可以通过其最终产物,亚硝酸盐在最佳条件下通过其吸光度来测量。 在这里,我们提供了一个详细的协议,用于测量来自拟南芥粗提物的NR的相对酶活性。 该协议提供简单的程序和数据分析来比较多个样品的NR活性。

【背景】氮是植物所需的主要营养素,主要以硝酸盐的形式吸收。硝酸还原酶是高等植物中首次同化氮的酶。植物硝酸还原酶的同型二聚体如下催化硝酸根的NAD(P)H依赖性还原为亚硝酸根:

NO <3> + NADH + H +→NO - + NAD + H 测量NR活性的方法可能是研究影响NR活性的生物因素的有力工具(Park等人,2011)。氮同化影响植物中氨基酸的含量,因此调节NR活性可用于提高某些作物的质量(Croy和Hageman,1970; Dalling和Loyn,1977; Ruan等人,1998) )。在该协议中,在优化的缓冲液条件下限制时间内亚硝酸盐浓度增加作为可比值获得。亚硫酸盐浓度通过Griess测定法通过其在540nm处的吸光度来测量。简言之,亚硝酸盐与磺胺酸形成重氮盐,然后N-(1-萘基)乙二胺二盐酸盐形成有色偶氮化合物。可以比较这些值以确定样品如何具有不同的NR活性。此外,通过简单的过程可以将这些数值转换为精确增加的亚硝酸盐浓度。 ...

Fluorescein Transport Assay to Assess Bulk Flow of Molecules Through the Hypocotyl in Arabidopsis thaliana
Author:
Date:
2018-04-05
[Abstract]  The bulk transport of molecules through plant tissues underpins growth and development. The stem acts as a conduit between the upper and low domains of the plant, facilitating transport of solutes and water from the roots to the shoot system, and sugar plus other elaborated metabolites towards the non-photosynthetic organs. In order to perform this function efficiently, the stem needs to be optimized for transport. This is achieved through the formation of vasculature that connects the whole plant but also through connectivity signatures that reduce path length distributions outside the vascular system. This protocol was devised to characterize how cell connectivity affects the bulk flow of molecules traversing the stem. This is achieved by exposing young seedlings to fluorescein, for ... [摘要]  分子通过植物组织的大量运输支撑了生长和发育。茎部充当植物上部和低部位之间的导管,促进溶质和水从根部向茎部系统的运输,糖和其他精细代谢物向非光合器官转运。为了有效地执行此功能,杆需要针对运输进行优化。这通过形成连接整个植物的脉管系统来实现,但也通过连接特征来减少血管系统外的路径长度分布。该协议被设计为描述细胞连接如何影响穿过茎的分子的大量流动。这是通过将幼苗暴露于荧光素而实现的,其中假定没有特定的转运蛋白存在于A中。在给定的暴露时间后,使用共焦显微镜和定量3D图像分析评估该荧光化合物在胚胎干(下胚轴)的单个细胞中的相对浓度。

【背景】结构和功能之间的联系一直着迷于生物学家,从器官的设计空间(Eldredge,1989)到进化路径的趋同或分歧(Morris,2003)。在较小规模的情况下,细胞也以稳健且严格控制的方式组织,与组织执行的功能密切相关(Jackson等人,2017a)。构成特定组织的细胞物理相互作用的集合也可被视为网络,即细胞连接体。这种连接体在植物中特别有趣,因为共享细胞壁阻碍细胞运动,因此网络动力学仅取决于细胞死亡和复制。

我们假设组织结构和细胞连接体与生理特征和器官功能有关。这样,网络指标和定量网络分析可用于预测并获得生物系统的理解(Duran-Nebreda和Bassel,2017; Jackson等人,2017b)。 ...

Electron Tomography to Study the Three-dimensional Structure of Plasmodesmata in Plant Tissues–from High Pressure Freezing Preparation to Ultrathin Section Collection
Author:
Date:
2018-01-05
[Abstract]  Plasmodesmata (PD) are nanometric (~20 nm wide) membrane lined pores encased in the cell walls of the adjacent plant cells. They allow the cells to exchange all types of molecules ranging from nutrients like sugar, hormones, to RNAs and various proteins. Unfortunately, they are also hijacked by phyto-viruses, enabling them to spread from cell-to-cell and then systematically throughout the whole plant. Their central position in plant biology makes it crucial to understand their physiology and especially link their function to their structure. Over the past 50 years, electron microscopists have observed them and attempted to ultrastructurally characterize them. They laid the foundation of what is known about these pores (Tilney et al., 1991; Ding et al., 1992; Oparka and ... [摘要]  Plasmodesmata(PD)是包裹在相邻植物细胞的细胞壁中的纳米(〜20nm宽)膜衬里的孔。它们允许细胞交换从糖,激素,RNA到各种蛋白质等营养物质的所有类型的分子。不幸的是,它们也被植物病毒劫持,使它们从细胞间传播,然后在整个植物体系中传播。它们在植物生物学中的核心地位使得理解其生理机制,尤其是将其功能与其结构联系起来至关重要。在过去的50年中,电子显微镜观察家们已经观察到了这些现象,并试图用超微结构来表征它们。他们为已知的这些毛孔奠定了基础(Tilney等人,1991; Ding等人,1992; Oparka和Roberts,2001; Nicolas等人, et al。,2017a)。

尽管三维电子显微镜(3D-EM)爆炸,PD超微结构仍然不支持这种技术。第一个技术难点是在尽可能接近原生状态的情况下处理它们。其次,由于染色/固定试剂穿透率差,其体积增大,含水量高以及存在酸性液泡,植物样品显示自己难以加工。最重要的是,它们在细胞壁上的独特位置和它们的纳米尺寸使得难以方便地染色以便看到这些孔隙的内部运作。

这里我们详细描述Nicolas et al。(2017b)中使用的协议,对PD进行细节化处理,并生成高分辨率的X线断层图。


【背景】高压冻结(HPF)依赖于样品中存在的水的玻璃化。通过以足够高的冷冻速度(10 ...

Comments